Mean circulation and hydrography in the Ross Sea sector, Southern Ocean: representation in numerical models

2010 ◽  
Vol 22 (5) ◽  
pp. 533-558 ◽  
Author(s):  
Graham J. Rickard ◽  
Malcolm J. Roberts ◽  
Michael J.M. Williams ◽  
Alistair Dunn ◽  
Murray H. Smith

AbstractThree models were used to look at the Southern Ocean Ross Sea sector circulation and hydrography. Two were climate models of low (1°) to intermediate resolution (1/3°), and one was an operational high resolution (1/10°) ocean model. Despite model differences (including physics and forcing), mean and monthly variability aspects of off-shelf circulation are consistently represented, and could imply bathymetric constraints. Western and eastern cyclonic gyral systems separated by shallow bathymetry around 180°E redistributing water between the wider Southern Ocean and the Ross Sea are found. Some model seasonal gyral transports increase as the Antarctic Circumpolar Current transport decreases. Model flows at 900 m at the gyral eastern end compare favourably with float data. On-shelf model depth-averaged west–east flow is relatively consistent with that reconstructed from longline fishing records. These flows have components associated with isopycnal gradients in both light and dense waters. The climate models reproduce characteristic isopycnal layer inflections (‘V’s) associated with the observed Antarctic Slope Front and on-shelf deep water formation, and these models transport some 4 Sv of this bottom water northwards across the outer 1000 m shelf isobath. Overall flow complexity suggests care is needed to force regional Ross Sea models.

2005 ◽  
Vol 18 (15) ◽  
pp. 3068-3073 ◽  
Author(s):  
John C. Fyfe ◽  
Oleg A. Saenko

Abstract Global climate models indicate that the poleward shift of the Antarctic Circumpolar Current observed over recent decades may have been significantly human induced. The poleward shift, along with a significant increase in the transport of water around Antarctica, is predicted to continue into the future. To appreciate the magnitude of the poleward shift it is noted that by century’s end the concomitant shrinking of the Southern Ocean is predicted to displace a volume of water close to that in the entire Arctic Ocean. A simple theory, balancing surface Ekman drift and ocean eddy mixing, explains these changes as the oceanic response to changing wind stress.


Ocean Science ◽  
2014 ◽  
Vol 10 (2) ◽  
pp. 201-213 ◽  
Author(s):  
G. Sgubin ◽  
S. Pierini ◽  
H. A. Dijkstra

Abstract. In this paper, the variability of the Antarctic Circumpolar Current system produced by purely intrinsic nonlinear oceanic mechanisms is studied through a sigma-coordinate ocean model, implemented in a large portion of the Southern Ocean at an eddy-permitting resolution under steady surface heat and momentum fluxes. The mean transport through the Drake Passage and the structure of the main Antarctic Circumpolar Current fronts are well reproduced by the model. Intrinsic variability is found to be particularly intense in the Subantarctic Front and in the Argentine Basin, on which further analysis is focused. The low-frequency variability at interannual timescales is related to bimodal behavior of the Zapiola Anticyclone, with transitions between a strong and collapsed anticyclonic circulation in substantial agreement with altimeter observations. Variability on smaller timescales shows clear evidence of topographic Rossby-wave propagation along the eastern and southern flanks of the Zapiola Rise and of mesoscale eddies, also in agreement with altimeter observations. The analysis of the relationship between the low- and high-frequency variability suggests possible mechanisms of mutual interaction.


2019 ◽  
Vol 49 (12) ◽  
pp. 3221-3244 ◽  
Author(s):  
Ryan D. Patmore ◽  
Paul R. Holland ◽  
David R. Munday ◽  
Alberto C. Naveira Garabato ◽  
David P. Stevens ◽  
...  

AbstractIn the Southern Ocean the Antarctic Circumpolar Current is significantly steered by large topographic features, and subpolar gyres form in their lee. The geometry of topographic features in the Southern Ocean is highly variable, but the influence of this variation on the large-scale flow is poorly understood. Using idealized barotropic simulations of a zonal channel with a meridional ridge, it is found that the ridge geometry is important for determining the net zonal volume transport. A relationship is observed between ridge width and volume transport that is determined by the form stress generated by the ridge. Gyre formation is also highly reliant on the ridge geometry. A steep ridge allows gyres to form within regions of unblocked geostrophic (f/H) contours, with an increase in gyre strength as the ridge width is reduced. These relationships among ridge width, gyre strength, and net zonal volume transport emerge to simultaneously satisfy the conservation of momentum and vorticity.


2007 ◽  
Vol 37 (5) ◽  
pp. 1394-1412 ◽  
Author(s):  
Serguei Sokolov ◽  
Stephen R. Rintoul

Abstract Maps of the gradient of sea surface height (SSH) and sea surface temperature (SST) reveal that the Antarctic Circumpolar Current (ACC) consists of multiple jets or frontal filaments. The braided and patchy nature of the gradient fields seems at odds with the traditional view, derived from hydrographic sections, that the ACC is made up of three continuous circumpolar fronts. By applying a nonlinear fitting procedure to 638 weekly maps of SSH gradient (∇SSH), it is shown that the distribution of maxima in ∇SSH (i.e., fronts) is strongly peaked at particular values of absolute SSH (i.e., streamlines). The association between the jets and particular streamlines persists despite strong topographic and eddy–mean flow interactions, which cause the jets to merge, diverge, and fluctuate in intensity along their path. The SSH values corresponding to each frontal branch are nearly constant over the sector of the Southern Ocean between 100°E and 180°. The front positions inferred from SSH agree closely with positions inferred from hydrographic sections using traditional water mass criteria. Recognition of the multiple branches of the Southern Ocean fronts helps to reconcile differences between front locations determined by previous studies. Weekly maps of SSH are used to characterize the structure and variability of the ACC fronts and filaments. The path, width, and intensity of the frontal branches are influenced strongly by the bathymetry. The “meander envelopes” of the fronts are narrow on the northern slope of topographic ridges, where the sloping topography reinforces the β effect, and broader over abyssal plains.


2013 ◽  
Vol 43 (3) ◽  
pp. 583-601 ◽  
Author(s):  
H. Sekma ◽  
Y.-H. Park ◽  
F. Vivier

Abstract The major mechanisms of the oceanic poleward heat flux in the Southern Ocean are still in debate. The long-standing belief stipulates that the poleward heat flux across the Antarctic Circumpolar Current (ACC) is mainly due to mesoscale transient eddies and the cross-stream heat flux by time-mean flow is insignificant. This belief has recently been challenged by several numerical modeling studies, which stress the importance of mean flow for the meridional heat flux in the Southern Ocean. Here, this study analyzes moored current meter data obtained recently in the Fawn Trough, Kerguelen Plateau, to estimate the cross-stream heat flux caused by the time-mean flow and transient eddies. It is shown that the poleward eddy heat flux in this southern part of the ACC is negligible, while that from the mean flow is overwhelming by two orders of magnitude. This is due to the unusual anticlockwise turning of currents with decreasing depth, which is associated with significant bottom upwelling engendered by strong bottom currents flowing over the sloping topography of the trough. The circumpolar implications of these local observations are discussed in terms of the depth-integrated linear vorticity budget, which suggests that the six topographic features along the southern flank of the ACC equivalent to the Fawn Trough case would yield sufficient poleward heat flux to balance the oceanic heat loss in the subpolar region. As eddy activity on the southern flank of the ACC is too weak to transport sufficient heat poleward, the nonequivalent barotropic structure of the mean flow in several topographically constricted passages should accomplish the required task.


Author(s):  
Karen J. Heywood ◽  
Sunke Schmidtko ◽  
Céline Heuzé ◽  
Jan Kaiser ◽  
Timothy D. Jickells ◽  
...  

The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean–atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.


Sign in / Sign up

Export Citation Format

Share Document