Unprotected larval development in the Antarctic scallop Adamussium colbecki (Mollusca: Bivalvia: Pectinidae)

1991 ◽  
Vol 3 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Paul Arthur Berkman ◽  
Thomas R. Waller ◽  
Stephen P. Alexander

Most Antarctic bivalves are small and protect their young by holding fertilized eggs or larvae in their mantle cavities for varying periods. Nourishment for these early growth stages is provided by yolk reserves rather than by planktotrophy. The anomalously large Antarctic scallop, Adamussium colbecki, has unprotected planktotrophic larvae that are spawned during the austral spring. Successful recruitment of these larvae, in populations which are most abundant in oligotrophic habitats, may be associated with episodic pulses of organic material. Reasons why planktotrophy persists in A. colbecki are suggested by a comparison with another large Antarctic bivalve, Laternula elliptica. The latter has protected lecithotrophic larvae that are released at the beginning of the austral winter. This comparison suggests that unprotected larval development persists in A. colbecki because of unusual anatomical and ecological adaptations among the adults of the Adamussium lineage that have been evolving in the Southern Ocean since the early Oligocene.

Author(s):  
Cynthia D. Trowbridge

The stenophagous ascoglossan (=sacoglossan) opisthobranch Elysia viridis has long been a model organism for the study of endosymbiosis or kleptoplasty as well as one of the few herbivores to consume the introduced green macroalga Codium fragile on European shores. Larval and post-larval dynamics of the ascoglossan were investigated. Planktotrophic larvae of E. viridis grew at 5–10 μm d−1 (shell length) at 15°C on a unicellular algal diet (the cryptophyte Rhodomonas baltica); larvae became competent one month post-hatching. Effective feeding and chloroplast acquisition typically started within 2–3 d of metamorphosis. Slugs grew about 8 mm in the first month of post-larval life. During this period, juveniles held in the light did not grow faster or survive better than conspecifics held in the dark; thus, functional kleptoplasty did not occur during first three weeks of benthic life. While larval growth rates and the nature of metamorphic cues are consistent with those of many other opisthobranch species with planktotrophic larvae, measures of post-larval growth—particularly as it pertains to kleptoplasty—is a new contribution to opisthobranch biology.


2021 ◽  
Vol 13 (8) ◽  
pp. 1594
Author(s):  
Songkang Kim ◽  
Sang-Jong Park ◽  
Hana Lee ◽  
Dha Hyun Ahn ◽  
Yeonjin Jung ◽  
...  

The ground-based ozone observation instrument, Brewer spectrophotometer (Brewer), was used to evaluate the quality of the total ozone column (TOC) produced by multiple polar-orbit satellite measurements at three stations in Antarctica (King Sejong, Jang Bogo, and Zhongshan stations). While all satellite TOCs showed high correlations with Brewer TOCs (R = ~0.8 to 0.9), there are some TOC differences among satellite data in austral spring, which is mainly attributed to the bias of Atmospheric Infrared Sounder (AIRS) TOC. The quality of satellite TOCs is consistent between Level 2 and 3 data, implying that “which satellite TOC is used” can induce larger uncertainty than “which spatial resolution is used” for the investigation of the Antarctic TOC pattern. Additionally, the quality of satellite TOC is regionally different (e.g., OMI TOC is a little higher at the King Sejong station, but lower at the Zhongshan station than the Brewer TOC). Thus, it seems necessary to consider the difference of multiple satellite data for better assessing the spatiotemporal pattern of Antarctic TOC.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 445-455 ◽  
Author(s):  
Stefano Bonacci ◽  
Mark A. Browne ◽  
Awantha Dissanayake ◽  
Josephine A. Hagger ◽  
Ilaria Corsi ◽  
...  

2022 ◽  
pp. 1-63

Abstract Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar events (WPV) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere, i.e., a weaker and more contracted Antarctic stratospheric polar vortex. Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere besides the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric scale temperature and precipitation anomalies.


2016 ◽  
Author(s):  
Michael R. Giordano ◽  
Lars E. Kalnajs ◽  
Anita Avery ◽  
James D. Goetz ◽  
Sean M. Davis ◽  
...  

Abstract. Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population. Previous work over the continent has primarily utilized low resolution aerosol filters (coupled with off-line ion chromatography) to answer questions about Antarctic aerosols. Bulk aerosol sampling has been useful in identifying seasonal cycles in the aerosol populations, especially in populations that have been attributed to Southern Ocean phytoplankton emissions. However, real-time, high resolution chemical composition data is necessary to identify the mechanisms and exact timing of changes in the Antarctic aerosol populations. The recent 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high resolution aerosol mass spectrometer (SP-AMS or AMS) to the continent. Data obtained from the AMS, and a suite of other aerosol, gas-phase, and meteorological instruments, are presented here. In particular, this manuscript focuses on the aerosol population over coastal Antarctica and the evolution of that population in Austral Spring. Results indicate that there exists a sulfate mode in Antarctica that is externally mixed to the rest of the aerosol population with a mass mode vacuum aerodynamic diameter of 250 nm. Springtime increases in sulfate aerosol are observed and attributed to biogenic sources, in agreement with previous research identifying phytoplankton activity as the source of the aerosol. Furthermore, the total Antarctic aerosol population is shown to undergo three distinct phases during the winter to summer transition. The first phase is dominated by highly aged sulfate particles comprising the majority of the aerosol population at low wind speed. The second phase, previously unidentified, is the generation of a sub-250 nm aerosol population of unknown composition. The second phase appears as a transitional phase during the extended polar sunrise. The third phase is marked by an increased importance of biogenically-derived sulfate to the total aerosol population (photolysis of dimethyl sulfate and methanesulfonic acid [DMS and MSA]). The increased importance of MSA is identified both through the direct, real-time measurement of aerosol MSA and through the use of positive matrix factorization on the sulfur containing ions in the high-resolution mass spectral data. Given the importance of sub-250 nm particles, the aforementioned second phase suggests that early Austral spring is the season where new particle formation mechanisms are likely to have the largest contribution to the aerosol population in Antarctica.


Sign in / Sign up

Export Citation Format

Share Document