On the thermohaline circulation beneath the Filchner-Ronne Ice Shelves

1991 ◽  
Vol 3 (4) ◽  
pp. 433-442 ◽  
Author(s):  
H.H. Hellmer ◽  
D.J. Olbers

In the Weddell Sea oceanographic data and numerical models demonstrate that Ice Shelf Water, one ingredient in the production of Weddell Sea Bottom Water, is formed by thermohaline interaction of High Salinity Shelf Water with the base of the Filchner-Ronne ice shelves. South of Berkner Island a passage with a water column thickness of about 300 m linking the Filchner and the Ronne regimes is important for the ventilation of the sub-ice shelf cavities. To simulate the flow we tested a two-dimensional thermohaline circulation model on several sections which approximate different geometries of a sub-ice shelf channel bounded by the ocean bottom and the ice shelf base. Temperature and salinity profiles measured in front of the Filchner-Ronne ice shelves are used to force the model. The results indicate that the circulation is sensitive to both salinity (density) forcing and depth of the shelf bottom prescribed at the open boundary representing the Ronne Ice Shelf edge. Where the shelf is shallow, 400 m deep, a closed circulation cell within the Ronne cavity acts like an ice pump with accumulation rates of marine ice at the ice shelf base up to 1.5 m y−1. The total outflow at the Ronne Ice Shelf edge is supported by an inflow from the Filchner regime. Where the shelf is deeper, a flow from the Ronne into the Filchner cavity develops if the bottom salinity at the Ronne Ice Shelf edge exceeds a critical value of 34.67. Seasonal variability imposed at both edges modifies the circulation pattern at the Filchner Ice Shelf edge such that the depth and magnitude of Ice Shelf Water outflow correspond with observations in the Filchner Depression.

1990 ◽  
Vol 14 ◽  
pp. 338
Author(s):  
H.H. Hellmer

The production of Antarctic Bottom Water is mainly influenced by Ice Shelf Water, which is formed through the modification of shelf water masses under huge ice shelves. To simulate this modification a two-dimensional thermohaline circulation model has been developed for a section perpendicular to the ice-shelf edge. Hydrographic data from the Filchner Depression enter into the model as boundary conditions. In the outflow region they also serve as a verification of model results. The standard solution reveals two circulation cells. The dominant one transports shelf water near the bottom toward the grounding line, where it begins to ascend along the inclined ice shelf. The contact with the ice shelf causes melting with a maximum rate of 1.5 m a−1 at the grounding line. Freezing and therefore the accumulation of “sea ice” at the bottom of the ice shelf occurs at the end of the melting zone at a rate on the order of 0.1 ma−1. Both rates are comparable with values estimated or predicted by models concerning ice-shelf dynamics. As one example of model sensitivity to changing boundary conditions, a higher sea-ice production in the southern Weddell Sea, as might be expected for a general climatic cooling event, is assumed. The resultant decrease/ increase in temperature/salinity of the inflow (Western Shelf Water) reduces the circulation under the ice shelf and therefore the outflow of Ice Shelf Water by 40%. The maximum melting and freezing rate decreases by 0.1 ma−1 and 0.01 m a−1, respectively. and the freezing zone shifts toward the grounding line by 100 km. In general the intensity of the circulation cells, the characteristics of Ice Shelf Water, the distribution of melting and freezing zones and the melting and freezing rates differ from the standard results with changing boundary conditions. These are the temperature and salinity of the inflow, the surface temperature at the top, and the extension and morphology of the ice shelf.


1989 ◽  
Vol 1 (4) ◽  
pp. 325-336 ◽  
Author(s):  
H.H. Hellmer ◽  
D.J. Olbers

The production of Antarctic Bottom Water is influenced by Ice Shelf Water which is formed due to the modification of shelf water masses under huge ice shelves. The coupling of inflow conditions, thermohaline processes at the ice shelf base and the sub-ice shelf circulation is studied with a two-dimensional thermohaline circulation model which has been developed for a section perpendicular to the ice shelf edge. Different boundary conditions appropriate to the Filchner Ice Shelf regime are considered. The model results indicate that, in general, shelf water is transported toward the grounding line, where at the ice shelf base melting occurs with a maximum rate of 1.5 my−1. Accumulation of ice takes place at the end of the melting zone close to the ice shelf edge with a rate on the order of 0.1 my−1. The location of this accumulation zone determines whether or not the density increase by salt rejection causes an upper circulation cell and the separation of the modified water mass from the ice shelf base at mid-range depth. At the ice shelf edge the simulated temperature, salinity, helium and δ18O values for the temperature minimum layer are typical for Ice Shelf Water. However the sub-ice shelf circulation is highly variable as well as sensitive to changes in boundary conditions. Moderate changes in the characteristics of the inflowing water or in sea-floor topography may double the intensity of the circulation. Non-linear processes in the accumulation zone cause variabilities which can be described by an ice shelf edge oscillator influencing the entire circulation regime.


1990 ◽  
Vol 14 ◽  
pp. 338-338
Author(s):  
H.H. Hellmer

The production of Antarctic Bottom Water is mainly influenced by Ice Shelf Water, which is formed through the modification of shelf water masses under huge ice shelves. To simulate this modification a two-dimensional thermohaline circulation model has been developed for a section perpendicular to the ice-shelf edge. Hydrographic data from the Filchner Depression enter into the model as boundary conditions. In the outflow region they also serve as a verification of model results.The standard solution reveals two circulation cells. The dominant one transports shelf water near the bottom toward the grounding line, where it begins to ascend along the inclined ice shelf. The contact with the ice shelf causes melting with a maximum rate of 1.5 m a−1 at the grounding line. Freezing and therefore the accumulation of “sea ice” at the bottom of the ice shelf occurs at the end of the melting zone at a rate on the order of 0.1 ma−1. Both rates are comparable with values estimated or predicted by models concerning ice-shelf dynamics.As one example of model sensitivity to changing boundary conditions, a higher sea-ice production in the southern Weddell Sea, as might be expected for a general climatic cooling event, is assumed. The resultant decrease/ increase in temperature/salinity of the inflow (Western Shelf Water) reduces the circulation under the ice shelf and therefore the outflow of Ice Shelf Water by 40%. The maximum melting and freezing rate decreases by 0.1 ma−1 and 0.01 m a−1, respectively. and the freezing zone shifts toward the grounding line by 100 km.In general the intensity of the circulation cells, the characteristics of Ice Shelf Water, the distribution of melting and freezing zones and the melting and freezing rates differ from the standard results with changing boundary conditions. These are the temperature and salinity of the inflow, the surface temperature at the top, and the extension and morphology of the ice shelf.


Ocean Science ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 89-98 ◽  
Author(s):  
M. R. Price ◽  
K. J. Heywood ◽  
K. W. Nicholls

Abstract. Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150–200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100–150 m of the water column in the southeast Weddell Sea.


2001 ◽  
Vol 13 (3) ◽  
pp. 312-322 ◽  
Author(s):  
Carol J. Pudsey ◽  
Jeffrey Evans ◽  
Eugene W. Domack ◽  
Peter Morris ◽  
Rodolfo A. Del Valle

We present preliminary results of the first detailied surveys of the former Larsen-A Ice Shelf, Larsen Inlet and southern Prince Gustav Channel, where disintegration of small ice shelves in the past ten years has exposed the seafloor. Glacial troughs in the Larsen-A area, Larsen Inlet and Prince Gustav Channel reach 900–1100 m depth and have hummocky floors. Farther south-east, the continental shelf is shallower (400–500 m) and its surface is fluted to smooth, with the density of iceberg furrowing increasing towards the shelf edge. Acoustic profiles show a drape of transparent sediment 4–8 m thick in Prince Gustav Channel, thinning southwards. In cores, this drape corresponds to diatom-bearing marine and glacial-marine mud. In the Larsen-A area and Larsen Inlet, acoustically opaque sediment includes proximal ice shelf glaciomarine gravelly and sandy muds, and firm to stiff diamicts probably deposited subglacilly. These are overlain by thin (up to 1.3 m) glaciomarine muds, locally with distinctive diatom ooze laminae.


2014 ◽  
Vol 8 (1) ◽  
pp. 999-1022 ◽  
Author(s):  
D. Price ◽  
W. Rack ◽  
P. J. Langhorne ◽  
C. Haas ◽  
G. Leonard ◽  
...  

Abstract. This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice–ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.


1990 ◽  
Vol 95 (C3) ◽  
pp. 3253 ◽  
Author(s):  
Peter Schlosser ◽  
Reinhold Bayer ◽  
Arne Foldvik ◽  
Tor Gammelsrød ◽  
Gerd Rohardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document