The origin of salts in water bodies of the McMurdo Dry Valleys

1998 ◽  
Vol 10 (4) ◽  
pp. 439-448 ◽  
Author(s):  
Nobuki Takamatsu ◽  
Naoyuki Kato ◽  
Genki I. Matsumoto ◽  
Tetsuya Torii

Lithium distributions in lake and pond waters of the McMurdo Dry Valleys of southern Victoria Land, Antarctica were studied to elucidate the origin of dissolved salts and the evolutionary history of the lakes and ponds. The EfLi [(Li/Cl)sample/(Li/Cl)seawater] values of the bottom waters in Lakes Bonney and Fryxell were higher than unity (EfLi=4–7), indicating that the salts originated from sea salts (probably relict seawater) and have been subsequently modified by the contribution of meltwaters containing atmospheric fallout and/or rock and soil weathering products. In contrast, extremely high Li concentrations with high EfLi values in the Don Juan Pond water (EfLi = 180) and the bottom waters of Lake Vanda (EfLi = 40) suggest that the salts originated from deep groundwaters influenced mainly by saline water-rock interactions, as supported by the dissolution experiments of granite in NaCl solution. The low Li concentrations of pond waters with high EfLi values in the Labyrinth indicate that the salts are derived from atmospheric fallout. The decrease of the EfLi values with the increase of Cl concentrations can be explained by the repeated cycles of the migration of Li into the ice phase and subsequent ablation of surface ice, as indicated by seawater freezing experiments.

1998 ◽  
Vol 10 (3) ◽  
pp. 247-256 ◽  
Author(s):  
W.B. Lyons ◽  
S.W. Tyler ◽  
R.A. Wharton ◽  
D.M. McKnight ◽  
B.H. Vaughn

Stable isotope data from waters of lakes in the McMurdo Dry Valleys (MDV) of southern Victoria Land, Antarctica are presented in order to establish the climatic history of this region over the past two millennia. New data from Lake Fryxell and Lake Hoare in Toylor Valley, along with previously published data from Lake Vanda, Wright Valley and Lake Bonney, Taylor Valley are used to infer the recent climatic history of MDV. Lakes Vanda, Fryxell and Bonney appear to have lost their ice covers and evaporated to small, hypersaline ponds by 1000 to ~1200 yr BP. Lake Hoare either desiccated or did not exist prior to 1200 yr BP. These data indicate a major lowering of lake level prior to ~1000 yr BP, followed by a warmer and/or more humid climate since then.


2016 ◽  
Vol 62 (234) ◽  
pp. 714-724 ◽  
Author(s):  
SHELLEY MACDONELL ◽  
MARTIN SHARP ◽  
SEAN FITZSIMONS

ABSTRACTCryoconite holes can be important sources and stores of water and nutrients on cold and polythermal glaciers, and they provide a habitat for various forms of biota. Understanding the hydrological connectivity of cryoconite holes may be the key to understanding the transport of nutrients and biological material to the proglacial areas of such glaciers. This paper aims to characterize and explain spatial variability in the connectivity of ice-lidded cryoconite holes on a small, piedmont glacier in the McMurdo Dry Valleys through geochemical analysis of cryoconite hole waters. Solute concentrations in both surface and near-surface ice and cryoconite holes, vary greatly along the glacier centerline, and all sample types displayed similar spatial patterns of variability. Using chloride as a tracer, we estimated variations in cryoconite hole connectivity along the glacier centerline. We found that a previously used mass transfer method did not provide reliable estimates of the time period for which cryoconite hole waters had been isolated from the atmosphere. We attribute this to spatial variability in both the chloride content of the surface ice and surface ablation rates. The approach may, however, be used to qualitatively characterize spatial variations in the hydrological connectivity of the cryoconite holes. These results also suggest that ice-lidded cryoconite holes are never truly isolated from the near-surface drainage system.


2004 ◽  
Vol 109 (D3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Thomas H. Nylen ◽  
Andrew G. Fountain ◽  
Peter T. Doran

2021 ◽  
Vol 9s6 ◽  
pp. 61-89
Author(s):  
Adrian Howkins ◽  
Stephen Chignell ◽  
Andrew Fountain

This article uses the history of New Zealand�s Vanda Station in Antarctica as a case study of the inseparability of human history and environmental change in the age of the Anthropocene. Vanda Station was built in the late 1960s to promote New Zealand�s sovereignty claims to Antarctica and to promote scientific research in the predominantly ice-free McMurdo Dry Valleys region. Over the course of the 1970s and 1980s, the levels of the nearby Lake Vanda rose dramatically, and in the early 1990s the decision was taken to close the station. Rather than seeing the closure of Vanda simply as a consequence of the rising lake levels, this article suggests instead that it was the result of a number of interconnected social, political, scientific, and environmental factors. Although the concept of the Anthropocene is not unproblematic, a biographical approach to the history of Vanda Station can add depth and nuance to our understanding of the geological age of humans. In the McMurdo Dry Valleys, the �birth�, �life� and �death� of Vanda Station helps to demonstrate how the political status quo maintained itself through a partial adaptation to the new realities of the Anthropocene. This political adaptation, however, relies on maintaining human-nature dichotomies and resisting the full implications of viewing the region as an eco-social system.


1996 ◽  
Vol 8 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Jenny Webster ◽  
Ian Hawes ◽  
Malcolm Downes ◽  
Michael Timperley ◽  
Clive Howard-Williams

Lake Wilson, a perennially ice-capped, deep (>100 m) lake at 80°S in southern Victoria Land was investigated in January 1993. Water chemistry and physical structure showed three distinct layers; an upper c. 35 m mixed layer of low salinity, moderately turbid water; a less turbid mid layer, 20 m thick of slightly higher salinity and supersaturated with oxygen; and a deep 20 m brackish layer (conductivity c. 4000 μS cm−1) with anoxic conditions in the lower 5 m. Extreme supersaturation of N2O (up to 400 times air saturation) together with high nitrate concentration (4000 mg m−3) was recorded in the deep layer. Phytoplankton biomass and photosynthetic activity was confined to the upper mixed layer and the band of supersaturated dissolved oxygen located at 40–55 m appears to represent a relict layer from when the lake level was lower. The evidence from a comparison of profiles between 1975 and 1993 suggests that Lake Wilson has risen 25 m since 1975, synchronous with a period of lake level rise in the McMurdo Dry Valleys lakes to the north at 77°S. Geochemical diffusion models indicate that Lake Wilson had evaporated to a smaller brine lake about 1000 yrs BP, which also fits the pattern shown by the McMurdo Dry Valleys lakes. Climate changes influencing lake levels have thus covered a wide area of southern Victoria Land.


Polar Record ◽  
2005 ◽  
Vol 41 (1) ◽  
pp. 77-96 ◽  

The texts of the Decisions and Resolutions, and the text of Measure 1 (2004), together with a summary of the Management Plan for Antarctic Specially Managed area No. 2, McMurdo Dry Valleys, Southern Victoria Land, adopted at XXVII ATCM were reproduced in SCAR Bulletin No 155, October 2004. A summary of the Management Plan for Antarctic Specially Managed Area No. 3, Cape Denison, Commonwealth Bay, George V land, together with Measures 2–4, are reproduced here. The full versions of all the Decisions, Measures and Resolutions are on the Antarctic Treaty Secretariat website at http://www.ats.org.ar/


1992 ◽  
Vol 4 (1) ◽  
pp. 37-39 ◽  
Author(s):  
R.D. Seppelt ◽  
T.G.A. Green ◽  
A-M.J. Schwarz ◽  
A. Frost

Abundant immature sporophytes of the moss Pottia heimii are reported from the Lower Taylor Valley, McMurdo Dry Valleys and from Cape Chocolate, Victoria Land. These finds extend the reported southern limit for the occurrence of abundant moss sporophytes to 77° 55′S.


2013 ◽  
Vol 26 (3) ◽  
pp. 250-260 ◽  
Author(s):  
Tomislav Karanovic ◽  
John A.E. Gibson ◽  
Ian Hawes ◽  
Dale T. Andersen ◽  
Mark I. Stevens

AbstractContrary to earlier beliefs, crustaceans are present in ice-covered lakes of Antarctica. Interpretation of the significance of this has been hampered by the absence of robust identification of taxa present. We examine cyclopoid copepods from three widely separated lakes. All belong to the michaelseni group of the genus Diacyclops, which is widespread across Continental Antarctica, but do not fit into any existing species. Two new species were identified from eastern Antarctica, D. walkeri from Pineapple Lake (Vestfold Hills) and D. kaupi from Transkriptsii Gulf (Bunger Hills). Most significant was a dense population of a new epibenthic species (D. joycei) associated with microbial mats in Lake Joyce, one of the smaller McMurdo Dry Valleys lakes. This represents the first record of adult cyclopoid copepods from the ice-covered lakes of the Transantarctic Mountains. Continental Antarctica is the centre of diversity for this group of crustaceans and we argue that this is better explained by persistence through past glacial advances rather than by recent post-glacial colonization. The existence of a species endemic to Lake Joyce but apparently absent from other Dry Valleys lakes is discussed in relation to our understanding of the history of the McMurdo Dry Valleys lakes and their faunas.


Sign in / Sign up

Export Citation Format

Share Document