The elemental and biochemical composition of bryophytes from the maritime Antarctic

1999 ◽  
Vol 11 (2) ◽  
pp. 157-159 ◽  
Author(s):  
Martin C. Davey

The elemental and biochemical composition of eight moss species from the maritime Antarctic were determined fornightly (summer) or monthly (winter) from December 1992 to November 1994. Short-duration summer carbohydrate maxima in Calliergon sarmentosum were seen in both years, but no other seasonal patterns were observed. The absence of seasonality in carbon, nitrogen and phosphorus concentrations or their atomic ratios suggest that the mosses were nutrient-sufficient throughout the year, and that nutrient availability was not important in determining moss productivity. Mosses from hydric habitats had lower carbohydrate and higher protein, nitrogen and phosphorus contents than those from drier habitats, possibly as a consequence of higher productivity and continual flushing with nutrients in wet habitats. The results are consistent with the importance of water and the primacy of physical factors in the ecology of Antarctic mosses.

1984 ◽  
Vol 14 (6) ◽  
pp. 794-802 ◽  
Author(s):  
Ralph E. J. Boerner

To determine how soil nutrient availability influences nutrient cycling, fluxes of nutrients through litterfall and decomposition were determined for four forest stands similar in all respects except soil nutrient availability and microclimate, within Neotoma Valley, a small watershed in southern Ohio, U.S.A. Litterfall varied from 10 to 60% among sites while nutrient concentrations and masses in new leaf litter varied as a function of extractable soil nutrient levels. Mass loss from litterbags was significantly higher in more fertile sites. Stepwise regression indicated that initial litter nitrogen and phosphorus concentrations were strongly correlated with relative decomposition rate while lignin concentration and microclimate variables were only correlated weakly. Thus, both litterfall nutrient transfers and decomposition rates were under the control of soil nutrient levels. Nitrogen was immobilized in litter at all sites during the 1st year of decay; litter from more fertile sites mineralized nitrogen during the 2nd year, while that from less fertile sites continued to immobilize nitrogen. Phosphorus and calcium mineralization rates were strongly correlated with the availability of these elements in the soil. Magnesium and potassium were leached rapidly from litter; amounts mineralized were correlated with amounts in litterfall. Interrelations among soil fertility, litterfall, and nutrient mineralization, as well as litter redistribution, are discussed as processes important in the development and maintenance of the soil fertility gradient in this watershed.


2015 ◽  
Vol 178 (7) ◽  
pp. 1407-1419 ◽  
Author(s):  
William Michelon ◽  
Marcio Luis Busi Da Silva ◽  
Melissa Paola Mezzari ◽  
Mateus Pirolli ◽  
Jean Michel Prandini ◽  
...  

2020 ◽  
Author(s):  
Katharine Putney ◽  
Mavis Wolf ◽  
Chase Mason ◽  
Shu-Mei Chang

AbstractSexual dimorphism in plant growth and/or reproductive responses to the surrounding environment has been documented in some plant species. In gynodioecious plants, it is especially important to understand whether females and hermaphrodites differ in their response to environmental stressors, as the fitness of females relative to hermaphrodites determines the extent to which these separate sexes are maintained in natural populations. Soil nutrient availability is of particular importance given the different nutrient requirements of male and female sexual functions in plants. Here, we evaluated and compared the growth of females and hermaphrodites of Geranium maculatum in response to varying levels of nutrients. Using a greenhouse experiment, we manipulated the overall nutrient, nitrogen, and phosphorus levels in the soil and measured growth, allocation, and leaf quality responses in both females and hermaphrodites. We found that sexes responded similarly in their growth and allocation responses to nutrient availability, albeit evidence that female leaf chlorophyll content may have increased more than that of hermaphrodites across soil nitrogen levels. Our findings demonstrate that hermaphrodites differ from females in terms of their physiological response to varying nutrient levels, however these physiological differences did not translate into meaningful growth or reproduction differences.


2019 ◽  
pp. 2-8
Author(s):  
L.V. Karpova ◽  
A.V. Strogonova

Наличие микроэлементов в почвах нашей страны находится в большом дефиците, что не позволяет оправдать биологический потенциал продуктивных показателей основных сельскохозяйственных культур. Цель исследований научное обоснование выбора наиболее эффективного способа применения комплексных жидких удобрений с микроэлементами в хелатной форме для формирования плотности агроценоза, посевных качеств и биохимического состава семян яровой пшеницы. Установлено, что в среднем за два года исследований полевая всхожесть яровой пшеницы на фоне естественного плодородия находилась в пределах 73,8-78,4, а на фоне внесения азофоски она составила 73,6-79,3. Наибольшее количество сохранившихся растений к уборке отмечено как на фоне без внесения удобрений, так и на фоне минерального питания в вариантах с обработкой семян Мегамикс-семена и Мегамикс-Профи в фазы кущения и колошения 386 и 388 растений на 1 м2. Микроэлементные удобрения оказали влияние на массу 1000 семян, энергию прорастания, лабораторную всхожесть и силу роста. При выращивании данной культуры на фоне внесения N16P16K16 масса 1000 семян увеличилась на 10,1 по вариантам опыта, энергия прорастания 9,4, лабораторная всхожесть на 6,9, масса 100 ростков на 17, а длина ростка 18,9. Биохимический состав зерна показывает запас питательных элементов: белка, азота, фосфора и калия, наибольшее количество которых накопилось в зерне яровой пшеницы, выращенной при обработке семян и посевов удобрениями Мегамикс-семена и Мегамикс-Профи .There is a great shortage of trace elements in the soils of our country, which does not justify the biological potential of the productive indicators of the main crops. The research objective is the scientific substantiation of the choice of the most effective way of applying complex liquid fertilizers with microelements in chelated form to form the density of agrocenosis, seedlings qualities and biochemical composition of spring wheat seeds. It was established that, on average, over two years of research, the field germination of spring wheat against the background of natural fertility was in the range of 73.8-78.4, and against the background of the application of nitrogen-phosphorus-potassium fertilizer it amounted to 73.6-79.3. The largest number of plants remained for harvesting was noted both against the background without fertilizer application and against the background of mineral nutrition in the variants with seed treatment with Megamix-seeds and Megamix-Profi in the tillering and heading stages - 386 and 388 plants per 1 m2. Micronutrient fertilizers influenced the weight of 1000 seeds, germination energy, laboratory germination and growth power. When growing this crop against the background of N16P16K16 application, the weight of 1000 seeds increased by 10.1 according to the experimental variants, germination energy - 9.4, laboratory germination by 6.9, weight of 100 sprouts - by 17, and sprout length - 18.9. The biochemical composition of the grain shows a supply of the following nutrients: protein, nitrogen, phosphorus and potassium, the largest amount of which was accumulated in spring wheat grain grown during the treatment of seeds and crops with fertilizers Megamix-seeds and Megamix-Profi.


2021 ◽  
Vol 22 (7) ◽  
pp. 521-532
Author(s):  
Yuqi Liang ◽  
Min Liao ◽  
Zhiping Fang ◽  
Jiawen Guo ◽  
Xiaomei Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document