scholarly journals How silicon fertilizer improves nitrogen and phosphorus nutrient availability in paddy soil?

2021 ◽  
Vol 22 (7) ◽  
pp. 521-532
Author(s):  
Yuqi Liang ◽  
Min Liao ◽  
Zhiping Fang ◽  
Jiawen Guo ◽  
Xiaomei Xie ◽  
...  
2011 ◽  
Vol 10 (12) ◽  
pp. 1932-1940 ◽  
Author(s):  
Wei WANG ◽  
Wei-cai CHEN ◽  
Kai-rong WANG ◽  
Xiao-li XIE ◽  
Chun-mei YIN ◽  
...  

2019 ◽  
Vol 221 ◽  
pp. 50-59 ◽  
Author(s):  
Meng-Jun Tang ◽  
Qiang Zhu ◽  
Feng-Min Zhang ◽  
Wei Zhang ◽  
Jie Yuan ◽  
...  

1984 ◽  
Vol 14 (6) ◽  
pp. 794-802 ◽  
Author(s):  
Ralph E. J. Boerner

To determine how soil nutrient availability influences nutrient cycling, fluxes of nutrients through litterfall and decomposition were determined for four forest stands similar in all respects except soil nutrient availability and microclimate, within Neotoma Valley, a small watershed in southern Ohio, U.S.A. Litterfall varied from 10 to 60% among sites while nutrient concentrations and masses in new leaf litter varied as a function of extractable soil nutrient levels. Mass loss from litterbags was significantly higher in more fertile sites. Stepwise regression indicated that initial litter nitrogen and phosphorus concentrations were strongly correlated with relative decomposition rate while lignin concentration and microclimate variables were only correlated weakly. Thus, both litterfall nutrient transfers and decomposition rates were under the control of soil nutrient levels. Nitrogen was immobilized in litter at all sites during the 1st year of decay; litter from more fertile sites mineralized nitrogen during the 2nd year, while that from less fertile sites continued to immobilize nitrogen. Phosphorus and calcium mineralization rates were strongly correlated with the availability of these elements in the soil. Magnesium and potassium were leached rapidly from litter; amounts mineralized were correlated with amounts in litterfall. Interrelations among soil fertility, litterfall, and nutrient mineralization, as well as litter redistribution, are discussed as processes important in the development and maintenance of the soil fertility gradient in this watershed.


2020 ◽  
Author(s):  
Katharine Putney ◽  
Mavis Wolf ◽  
Chase Mason ◽  
Shu-Mei Chang

AbstractSexual dimorphism in plant growth and/or reproductive responses to the surrounding environment has been documented in some plant species. In gynodioecious plants, it is especially important to understand whether females and hermaphrodites differ in their response to environmental stressors, as the fitness of females relative to hermaphrodites determines the extent to which these separate sexes are maintained in natural populations. Soil nutrient availability is of particular importance given the different nutrient requirements of male and female sexual functions in plants. Here, we evaluated and compared the growth of females and hermaphrodites of Geranium maculatum in response to varying levels of nutrients. Using a greenhouse experiment, we manipulated the overall nutrient, nitrogen, and phosphorus levels in the soil and measured growth, allocation, and leaf quality responses in both females and hermaphrodites. We found that sexes responded similarly in their growth and allocation responses to nutrient availability, albeit evidence that female leaf chlorophyll content may have increased more than that of hermaphrodites across soil nitrogen levels. Our findings demonstrate that hermaphrodites differ from females in terms of their physiological response to varying nutrient levels, however these physiological differences did not translate into meaningful growth or reproduction differences.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11347
Author(s):  
Kun Hou ◽  
Ying Huang ◽  
Xiangmin Rong ◽  
Jianwei Peng ◽  
Chang Tian ◽  
...  

Nitrogen (N) and phosphorus (P) losses from agroecosystems are dominant nonpoint pollution. To minimize the losses of N and P, the optimal depth of fertilization was explored using a soil column study with the red paddy soil as the research objects. The losses of N and P were measured under five depths of fertilization (0, 5, 7.5, 10, and 12.5 cm) as well as no fertilization. The results showed that ammonia volatilization was significantly decreased with increasing fertilization depth within 0–10 cm, and there was no significant difference among the 10 cm, 12.5 cm, and no-fertilization treatments. Comparing with surface fertilization (0 cm), N and P losses by runoff could be reduced by 30.7–67.1% and 96.9–98.7% respectively by fertilization at 5–12.5 cm. In addition, deep fertilization (5–12.5 cm) did not increase N and P losses by leaching at the depth of 40 cm. Total N and P contents in the tillage layer of soil were increased by 5.1 to 22.8% and by −1.0 to 7.5%, respectively. Fertilization at 10cm depth has the potential to minimal environmental impact in the red paddy soil of south China, at this depth, NH3 volatilization was reduced by 95.1%, and N and P losses by runoff were reduced by 62.0% and 98.4%, respectively, compared with surface fertilization.


1999 ◽  
Vol 11 (2) ◽  
pp. 157-159 ◽  
Author(s):  
Martin C. Davey

The elemental and biochemical composition of eight moss species from the maritime Antarctic were determined fornightly (summer) or monthly (winter) from December 1992 to November 1994. Short-duration summer carbohydrate maxima in Calliergon sarmentosum were seen in both years, but no other seasonal patterns were observed. The absence of seasonality in carbon, nitrogen and phosphorus concentrations or their atomic ratios suggest that the mosses were nutrient-sufficient throughout the year, and that nutrient availability was not important in determining moss productivity. Mosses from hydric habitats had lower carbohydrate and higher protein, nitrogen and phosphorus contents than those from drier habitats, possibly as a consequence of higher productivity and continual flushing with nutrients in wet habitats. The results are consistent with the importance of water and the primacy of physical factors in the ecology of Antarctic mosses.


Sign in / Sign up

Export Citation Format

Share Document