The development of depressogenic self-schemas: Associations with children's regional grey matter volume in ventrolateral prefrontal cortex

2021 ◽  
pp. 1-11
Author(s):  
Pan Liu ◽  
Elizabeth P. Hayden ◽  
Lea R. Dougherty ◽  
Hoi-Chung Leung ◽  
Brandon Goldstein ◽  
...  

Abstract Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.

2020 ◽  
Author(s):  
Pan Liu ◽  
Elizabeth P. Hayden ◽  
Lea R. Dougherty ◽  
Hoi-Chung Leung ◽  
Brandon Goldstein ◽  
...  

Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children’s self-referential processing using the Self-Referent Encoding Task (SRET) collected from 559 children at ages 6, 9, and 12, a subset of whom (n = 74) also contributed structural magnetic resonance imaging data at an average age of 10. From age six to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A119-A119
Author(s):  
I Anlap ◽  
E Taylor ◽  
M A Grandner ◽  
W D Killgore

Abstract Introduction Vulnerability to sleep deprivation (SD) has been attributed to inter-individual trait-like differences in the ability to sustain vigilance and subjective alertness, which may have distinct neurobiological substrates. We have previously shown that reduced suppression of the Default Mode Network (DMN) during a cognitive task was predictive of global vulnerability to SD. However, little is known about vulnerability to mood decrements during SD and the underlying neurobiological mechanisms. Using voxel-based morphometry (VBM), we assessed structural differences in gray matter volume (GMV) of a region of the anterior DMN, the medial prefrontal cortex and its association with self-reported mood during 29 hours of SD. Methods 45 healthy participants (23 male; Ages 20-43) underwent 3T structural magnetic resonance imaging (MRI). Within 4 days, participants underwent an overnight SD session (29 hours awake total) which included hourly mood assessments with several visual analog mood scales (VAMS) assessing positive and negative affect. Hourly VAMS data were converted into a comparative metric of percent worsening of mood scores from 19:00 until noon the next day. These scores were averaged to determine a “mood resilience” score, with higher scores indicating greater mood sustainment. Using SPM12, the mean mood resilience scores were correlated with whole-brain gray matter volume, restricted to the medial prefrontal cortex, p<.05, FWE corrected, with a cluster threshold of 137 voxels. Results Overnight mood resilience was significantly correlated with greater grey matter volume in right rostral medial prefrontal cortex (p<.05, corrected; k=137). Conclusion Individuals with greater gray matter volume within a circumscribed region of the right medial prefrontal cortex demonstrated greater resilience to mood degradation over 29 hours of continuous wakefulness. This same region of the brain has been shown to be critical for the passive maintenance of emotions. We speculate that greater GMV could protect against mood decline by better sustaining emotional state during SD. Support Defense Advanced Research Projects Agency Young Faculty Award: DARPA-12-12-11-YFA11-FP-029


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A116-A116
Author(s):  
C E Meinhausen ◽  
J R Vanuk ◽  
M A Grandner ◽  
W D Killgore

Abstract Introduction Sleep deprivation has often been associated with decreased cognitive control, including deficits in the ability to sustain attention. Psychomotor vigilance speed slows following a period of fatigue, and can lead to disastrous results in daily life. In order to determine the brain areas correlated with reduced psychomotor vigilance speed, as a result of diminished sleep, a voxel-based morphometry analysis was performed prior to a period of monitored sleep deprivation. The mean speed of response time during the final 17 hours of a 29-hour sleep deprivation was then measured with the Psychomotor Vigilance Test (PVT), a reaction-timed task that measures the speed participants respond to a visual stimulus. Methods 45 healthy individuals (male=23 female=22) between the ages of 20-43 years (M=25.4 SD=5.6) participated in the study. Structural neuroimaging data were collected using a T3 magnetic resonance imaging scanner following a typical night’s sleep. Mean PVT speed was monitored with an hourly 10-minute PVT assessment during a monitored overnight sleep deprivation session. Speed was defined as the reciprocal of reaction time (1/RT). Results PVT speed was negatively correlated with grey matter volume (P<.05 FWE-corrected) in the prefrontal cortex, specifically the right posterior inferior frontal gyrus (p=.030; MNI coordinates = 36, 12, 26). Conclusion Our findings indicate that gray matter within the right posterior inferior frontal gyrus is greater in individuals who are more vulnerable to slowing of PVT responses during an overnight period of sleep deprivation. These findings suggest that inter-individual differences in the ability to sustain psychomotor vigilance during sleep loss may be related to increased gray matter in the right lateral prefrontal cortex and could have implications for understanding the neurobiological substrates of vulnerability and resilience to sleep loss. Support  


2021 ◽  
Author(s):  
Michal Rafal Zareba ◽  
Magdalena Fafrowicz ◽  
Tadeusz Marek ◽  
Ewa Beldzik ◽  
Halszka Oginska ◽  
...  

Abstract Humans can be classified as early, intermediate and late chronotypes based on the preferred sleep and wakefulness patterns. The anatomical basis of these distinctions remains largely unexplored. Using magnetic resonance imaging data from 113 healthy young adults (71 females), we aimed to replicate cortical thickness and grey matter volume chronotype differences reported earlier in the literature using a greater sample size, as well as to explore the volumetric white matter variation linked to contrasting circadian phenotypes. Instead of comparing the chronotypes, we correlated the individual chronotype scores with their morphometric brain measures. The results revealed one cluster in the left fusiform and entorhinal gyri showing increased cortical thickness with increasing preference for eveningness, potentially providing an anatomical substrate for chronotype-sensitive affective processing. No significant results were found for grey and white matter volume. We failed to replicate cortical thickness and volumetric grey matter distinctions in the brain regions reported in the literature. Furthermore, we found no association between white matter volume and chronotype. Thus, while this study confirms that circadian preference is associated with specific structural substrates, it adds to the growing concerns that reliable and replicable neuroimaging research requires datasets much larger than those commonly used.


2021 ◽  
Author(s):  
Michal Rafal Zareba ◽  
Magdalena Fafrowicz ◽  
Tadeusz Marek ◽  
Ewa Beldzik ◽  
Halszka Oginska ◽  
...  

Abstract Humans can be classified as early, intermediate and late chronotypes based on the preferred sleep and wakefulness patterns. The anatomical basis of these distinctions remains largely unexplored. Using magnetic resonance imaging data from 113 healthy young adults (71 females), we aimed to replicate cortical thickness and grey matter volume chronotype differences reported earlier in the literature using a greater sample size, as well as to explore the volumetric white matter variation linked to contrasting circadian phenotypes. Instead of comparing the chronotypes, we correlated the individual chronotype scores with their morphometric brain measures. The results revealed one cluster in the left fusiform and entorhinal gyri showing increased cortical thickness with increasing preference for eveningness, potentially providing an anatomical substrate for chronotype-sensitive affective processing. No significant results were found for grey and white matter volume. We failed to replicate cortical thickness and volumetric grey matter distinctions in the brain regions reported in the literature. Furthermore, we found no association between white matter volume and chronotype. Thus, while this study confirms that circadian preference is associated with specific structural substrates, it adds to the growing concerns that reliable and replicable neuroimaging research requires datasets much larger than those commonly used.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A118-A119
Author(s):  
W D Killgore ◽  
N S Dailey ◽  
A C Raikes ◽  
J R Vanuk ◽  
E Taylor ◽  
...  

Abstract Introduction Stable, trait-like inter-individual resilience to sleep loss has been demonstrated for psychomotor vigilance, mood, subjective sleepiness, and some reasoning tasks, some of which have been associated with specific genetic or neurobiological markers. Resilience to executive control deficits induced by sleep deprivation (SD) has not been explored in terms of neurobiological markers. We, therefore, collected magnetic resonance imaging (MRI) scans of healthy individuals when well rested and correlated gray matter volume with resistance to inhibitory declines during 29 hours of SD. Methods Forty-five healthy individuals (22 female) ranging in age from 20 to 43 underwent structural MRI. Within 2-4 days after scanning, participants returned to the lab to undergo one night of SD, during which they completed a standard go/no-go task involving inhibitory processing every 4 hours. Scores were calculated as throughput (correct responses per working minute). The difference between performance in the evening (22:45) versus the performance the next morning (06:45) was calculated as an index of “inhibitory resilience.” Gray matter volume was regressed against the inhibitory resilience measure. Based on prior research, regions were constrained to the ventrolateral prefrontal cortex and ventromedial prefrontal cortex. Results Greater resilience against declines in inhibitory capacity during SD was predicted by 1) larger gray matter volume within the ventrolateral prefrontal cortex and 2) reduced volume within the ventromedial prefrontal cortex (p<.05, FWE cluster corrected). These two clusters contributed significant unique explanatory variance to the model (R2=.45, p<.0001). Conclusion The ability to sustain performance during an inhibitory go/no-go task during SD was predicted by greater gray matter volume within the ventrolateral prefrontal cortex, a region that has been previously associated with inhibitory capacity, and reduced volume within an area of the ventromedial prefrontal cortex, which is often related to the default mode network. Findings suggest that specific brain networks may confer task-specific resistance to SD. Support Defense Advanced Research Projects Agency, DARPA Young Faculty Award: DARPA-12-12-11-YFA-FP-029


2020 ◽  
Vol 15 (9) ◽  
pp. 941-949
Author(s):  
Laura Finlayson-Short ◽  
Christopher G Davey ◽  
Ben J Harrison

Abstract Self-referential and social processing are often engaged concurrently in naturalistic judgements and elicit activity in overlapping brain regions. We have termed this integrated processing ‘self-other referential processing’ and developed a task to measure its neural correlates. Ninety-eight healthy young people aged 16–25 (M = 21.5 years old, 67% female) completed our novel functional magnetic resonance imaging task. The task had two conditions, an active self-other referential processing condition in which participants rated how much they related to emotional faces and a control condition. Rating relatedness required thinking about oneself (self-referential processing) and drawing a comparison to an imagined other (social processing). Self-other referential processing elicited activity in the default mode network and social cognition system; most notably in the ‘core self’ regions of the medial prefrontal cortex and posterior cingulate cortex. Relatedness and emotional valence directly modulated activity in these core self areas, while emotional valence additionally modulated medial prefrontal cortex activity. This shows the key role of the medial prefrontal cortex in constructing the ‘social-affective self’. This may help to unify disparate models of medial prefrontal cortex function, demonstrating its role in coordinating multiple processes—self-referential, social and affective processing—to allow the self to exist in a complex social world.


2009 ◽  
Vol 195 (3) ◽  
pp. 218-226 ◽  
Author(s):  
Nikolaos Koutsouleris ◽  
Gisela J. E. Schmitt ◽  
Christian Gaser ◽  
Ronald Bottlender ◽  
Johanna Scheuerecker ◽  
...  

BackgroundStructural brain abnormalities have been described in individuals with an at-risk mental state for psychosis. However, the neuroanatomical underpinnings of the early and late at-risk mental state relative to clinical outcome remain unclear.AimsTo investigate grey matter volume abnormalities in participants in a putatively early or late at-risk mental state relative to their prospective clinical outcome.MethodVoxel-based morphometry of magnetic resonance imaging data from 20 people with a putatively early at-risk mental state (ARMS–E group) and 26 people with a late at-risk mental state (ARMS–L group) as well as from 15 participants with at-risk mental states with subsequent disease transition (ARMS–T group) and 18 participants without subsequent disease transition (ARMS–NT group) were compared with 75 healthy volunteers.ResultsCompared with healthy controls, ARMS–L participants had grey matter volume losses in frontotemporolimbic structures. Participants in the ARMS–E group showed bilateral temporolimbic alterations and subtle prefrontal abnormalities. Participants in the ARMS–T group had prefrontal alterations relative to those in the ARMS–NT group and in the healthy controls that overlapped with the findings in the ARMS–L group.ConclusionsBrain alterations associated with the early at-risk mental state may relate to an elevated susceptibility to psychosis, whereas alterations underlying the late at-risk mental state may indicate a subsequent transition to psychosis.


Sign in / Sign up

Export Citation Format

Share Document