Spatial dynamics of a nonlocal model with periodic delay and competition

2020 ◽  
Vol 31 (6) ◽  
pp. 1070-1100
Author(s):  
L. ZHANG ◽  
K. H. LIU ◽  
Y. J. LOU ◽  
Z. C. WANG

Each species is subject to various biotic and abiotic factors during growth. This paper formulates a deterministic model with the consideration of various factors regulating population growth such as age-dependent birth and death rates, spatial movements, seasonal variations, intra-specific competition and time-varying maturation simultaneously. The model takes the form of two coupled reaction–diffusion equations with time-dependent delays, which bring novel challenges to the theoretical analysis. Then, the model is analysed when competition among immatures is neglected, in which situation one equation for the adult population density is decoupled. The basic reproduction number $\mathcal{R}_0$ is defined and shown to determine the global attractivity of either the zero equilibrium (when $\mathcal{R}_0\leq 1$ ) or a positive periodic solution ( $\mathcal{R}_0\gt1$ ) by using the dynamical system approach on an appropriate phase space. When the immature intra-specific competition is included and the immature diffusion rate is neglected, the model is neither cooperative nor reducible to a single equation. In this case, the threshold dynamics about the population extinction and uniform persistence are established by using the newly defined basic reproduction number $\widetilde{\mathcal{R}}_0$ as a threshold index. Furthermore, numerical simulations are implemented on the population growth of two different species for two different cases to validate the analytic results.

2019 ◽  
Vol 12 (05) ◽  
pp. 1950051
Author(s):  
Xia Wang ◽  
Yuming Chen ◽  
Xinyu Song

In this paper, we propose and analyze a cholera model. The model incorporates both direct transmission (person-to-person transmission) and indirect transmission (contaminated environment-to-person transmission: hyper-infectivity and lower-infectivity). Moreover, we employ general nonlinear incidences and introduce infection age of infectious individuals and biological ages of pathogens in the environment. After considering the well-posedness of the system, we study the existence and local stability of steady states, which is determined by the basic reproduction number. To establish the attractivity of the infection steady state, we also get the uniform persistence and existence of compact global attractors. The main result is a threshold dynamics obtained by applying the Fluctuation Lemma and the approach of Lyapunov functionals. When the basic reproduction number is less than one, the infection-free steady state is globally asymptotically stable while when the basic reproduction number is larger than one, the infection steady state attracts each solution with nonzero infection force at some time point. The effect of multiple transmission modes on the disease dynamics is also discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yali Yang ◽  
Chenping Guo ◽  
Luju Liu ◽  
Tianhua Zhang ◽  
Weiping Liu

The statistical data of monthly pulmonary tuberculosis (TB) incidence cases from January 2004 to December 2012 show the seasonality fluctuations in Shaanxi of China. A seasonality TB epidemic model with periodic varying contact rate, reactivation rate, and disease-induced death rate is proposed to explore the impact of seasonality on the transmission dynamics of TB. Simulations show that the basic reproduction number of time-averaged autonomous systems may underestimate or overestimate infection risks in some cases, which may be up to the value of period. The basic reproduction number of the seasonality model is appropriately given, which determines the extinction and uniform persistence of TB disease. If it is less than one, then the disease-free equilibrium is globally asymptotically stable; if it is greater than one, the system at least has a positive periodic solution and the disease will persist. Moreover, numerical simulations demonstrate these theorem results.


2018 ◽  
Vol 11 (08) ◽  
pp. 1850108 ◽  
Author(s):  
Kazuo Yamazaki

We study the reaction–diffusion Ebola PDE model that consists of equations that govern the evolution of susceptible, infected, recovered and deceased human individuals, as well as Ebola virus pathogens in the environment, with diffusive terms in all except the equation of the deceased human individuals. Under the setting of a spatial domain that is bounded, we prove the global well-posedness of the system; in contrast to the previous work on similar models such as cholera, avian influenza, malaria and dengue fever, diffusion coefficients may be different. Moreover, we derive its basic reproduction number, and under the condition that the diffusion coefficients of the susceptible and infected hosts are same, we prove the global stability of the disease-free-equilibrium, and uniform persistence in cases when the basic reproduction number lies beneath and above one, respectively. Again, we do not require that the diffusion coefficients of the recovered hosts be the same as the diffusion coefficients of the susceptible and infected hosts, in contrast to previous work on other models of infectious diseases. Another technical difficulty in our model is that the solution semiflow is not compact due to the lack of diffusion in the equation of the deceased human individuals; we overcome this difficulty using functional analysis techniques concerning Kuratowski measure of non-compactness.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jianping Wang ◽  
Shujing Gao ◽  
Yueli Luo ◽  
Dehui Xie

We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A new model about HLB transmission with Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global dynamics are determined by the basic reproduction numberR0which is defined through the spectral radius of a linear integral operator. IfR0< 1, then the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then the disease persists. Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are given.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinliang Wang ◽  
Hongquan Sun

This paper is concerned with a reaction-diffusion heroin model in a bound domain. The objective of this paper is to explore the threshold dynamics based on threshold parameter and basic reproduction number (BRN) ℜ0, and it is proved that if ℜ0<1, heroin spread will be extinct, while if ℜ0>1, heroin spread is uniformly persistent and there exists a positive heroin-spread steady state. We also obtain that the explicit formula of ℜ0 and global attractiveness of constant positive steady state (PSS) when all parameters are positive constants. Our simulation results reveal that compared to the homogeneous setting, the spatial heterogeneity has essential impacts on increasing the risk of heroin spread.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850069 ◽  
Author(s):  
Xia Wang ◽  
Ying Zhang ◽  
Xinyu Song

In this paper, a susceptible-vaccinated-exposed-infectious-recovered epidemic model with waning immunity and continuous age structures in vaccinated, exposed and infectious classes has been formulated. By using the Fluctuation lemma and the approach of Lyapunov functionals, we establish a threshold dynamics completely determined by the basic reproduction number. When the basic reproduction number is less than one, the disease-free steady state is globally asymptotically stable, and otherwise the endemic steady state is globally asymptotically stable.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Victor Yiga ◽  
Hasifa Nampala ◽  
Julius Tumwiine

Malaria is one of the world’s most prevalent epidemics. Current control and eradication efforts are being frustrated by rapid changes in climatic factors such as temperature and rainfall. This study is aimed at assessing the impact of temperature and rainfall abundance on the intensity of malaria transmission. A human host-mosquito vector deterministic model which incorporates temperature and rainfall dependent parameters is formulated. The model is analysed for steady states and their stability. The basic reproduction number is obtained using the next-generation method. It was established that the mosquito population depends on a threshold value θ , defined as the number of mosquitoes produced by a female Anopheles mosquito throughout its lifetime, which is governed by temperature and rainfall. The conditions for the stability of the equilibrium points are investigated, and it is shown that there exists a unique endemic equilibrium which is locally and globally asymptotically stable whenever the basic reproduction number exceeds unity. Numerical simulations show that both temperature and rainfall affect the transmission dynamics of malaria; however, temperature has more influence.


2021 ◽  
Vol 19 (1) ◽  
pp. 209-224
Author(s):  
Abdelheq Mezouaghi ◽  
◽  
Salih Djillali ◽  
Anwar Zeb ◽  
Kottakkaran Sooppy Nisar ◽  
...  

<abstract><p>In the case of an epidemic, the government (or population itself) can use protection for reducing the epidemic. This research investigates the global dynamics of a delayed epidemic model with partial susceptible protection. A threshold dynamics is obtained in terms of the basic reproduction number, where for $ R_0 &lt; 1 $ the infection will extinct from the population. But, for $ R_0 &gt; 1 $ it has been shown that the disease will persist, and the unique positive equilibrium is globally asymptotically stable. The principal purpose of this research is to determine a relation between the isolation rate and the basic reproduction number in such a way we can eliminate the infection from the population. Moreover, we will determine the minimal protection force to eliminate the infection for the population. A comparative analysis with the classical SIR model is provided. The results are supported by some numerical illustrations with their epidemiological relevance.</p></abstract>


Author(s):  
Soufiane Bentout ◽  
Salih Djilali ◽  
Abdenasser Chekroun

We consider in this research an age-structured alcoholism model. The global behavior of the model is investigated. It is proved that the system has a threshold dynamics in terms of the basic reproduction number (BRN), where we obtained that alcohol-free equilibrium (AFE) is globally asymptotically stable (GAS) in the case [Formula: see text], but for [Formula: see text] we found that the system persists and the nontrivial equilibrium (EE) is GAS. Furthermore, the effects of the susceptible drinkers rate and the repulse rate of the recovers to alcoholics are investigated, which allow us to provide a proper strategy for reducing the spread of alcohol use in the studied populations. The obtained mathematical results are tested numerically next to its biological relevance.


Sign in / Sign up

Export Citation Format

Share Document