scholarly journals Landscape associations of globally threatened grassland birds in the Aguapey river Important Bird Area, Corrientes, Argentina

2009 ◽  
Vol 20 (1) ◽  
pp. 62-73 ◽  
Author(s):  
ADRIAN S. DI GIACOMO ◽  
PETER D. VICKERY ◽  
HERNAN CASAÑAS ◽  
OSCAR A. SPITZNAGEL ◽  
CHRISTIAN OSTROSKY ◽  
...  

SummaryThe Aguapey river basin in the Pampas grasslands of Argentina is the last refuge for a complete assemblage of globally threatened and Near Threatened birds. We evaluated the influence of landscape characteristics on the occurrence and abundance of six globally threatened and Near Threatened passerines. We used point counts to census birds and vegetation and quantified landscape characteristics 1,000 m from the count centres using remote sensing tools. Strange-tailed Tyrants Alectrurus risora were associated with higher percentages of tall-grass Andropogon lateralis in lowland areas. Saffron-cowled Blackbirds Xanthopsar flavus and Black-and-white Monjitas Heteroxolmis dominicana were associated with rolling landscape with wet lowland grasslands and marshes linked with dry upland grasslands. Marsh Seedeater Sporophila palustris and Chestnut Seedeater S. cinnamomea were associated with tall grasslands and marshes. Rufous-throated Seedeater S. ruficollis was not clearly associated with any type of habitat. The Aguapey grasslands are used mainly for livestock grazing and afforestation. Since 1995, approximately 50% of the original grassland habitat has been planted with exotic trees. If this trend continues, Saffron-cowled Blackbirds are likely to become extinct in the Aguapey river basin which currently supports the largest population of this species in Argentina. We recommend guidelines for establishing future reserves and wildlife management actions based on the landscape responses detected in this study. Future action should consider: maintaining connectivity between the Aguapey grasslands and the Ibera Nature Reserve, creating a protected area, designing a land use plan for the basin, avoiding afforestation in large blocks, removal of government incentives for large afforestation projects, and studying the viability of threatened bird populations in extensive cattle ranching areas.

Our Nature ◽  
1970 ◽  
Vol 7 (1) ◽  
pp. 56-81
Author(s):  
H.S. Baral ◽  
C. Inskipp

Sukla Phanta Wildlife Reserve lies in the southwest corner of Nepal. It has been listed as an important bird area and a number of bird studies have been conducted here. The reserve is an important refuge especially for many grassland birds, several of which are globally threatened. The high, total of 15 globally threatened and 13 near-threatened bird species occur in Sukla Phanta. Some of the bird species reach their world limit of distribution at Sukla Phanta. Of all the habitats found in Sukla Phanta, grassland is the most important. Conservation and management of grasslands that are sympathetic to bird populations are urgent at Sukla Phanta. Key words: Sarcogyps calvus, globally threatened birds, Sukla Phanta Wildlife Reserve, NepalDOI: 10.3126/on.v7i1.2554Our Nature (2009) 7:56-81 


The Auk ◽  
1997 ◽  
Vol 114 (4) ◽  
pp. 811-813
Author(s):  
Bertin W. Anderson

2002 ◽  
Vol 32 (7) ◽  
pp. 1109-1125 ◽  
Author(s):  
Theresa B Jain ◽  
Russell T Graham ◽  
Penelope Morgan

Many studies have assessed tree development beneath canopies in forest ecosystems, but results are seldom placed within the context of broad-scale biophysical factors. Mapped landscape characteristics for three watersheds, located within the Coeur d'Alene River basin in northern Idaho, were integrated to create a spatial hierarchy reflecting biophysical factors that influence western white pine (Pinus monticola Dougl. ex D. Don) development under a range of canopy openings. The hierarchy included canopy opening, landtype, geological feature, and weathering. Interactions and individual-scale contributions were identified using stepwise log–linear regression. The resulting models explained 68% of the variation for estimating western white pine basal diameter and 64% for estimating height. Interactions among spatial scales explained up to 13% of this variation and better described vegetation response than any single spatial scale. A hierarchical approach based on biophysical attributes is an excellent method for studying plant and environment interactions.


Author(s):  
I.N. Kurochkin ◽  
◽  
E.Yu. Kulagina ◽  
N.V. Chugay ◽  
◽  
...  

The main trends in changing the land use structure in the territory of the Klyazma River basin were de-scribed in the article. Using GIS technologies and remote sensing data the areas of land with different land use regimes in the studied territory were determined in the period from 2001 to 2019. The indices of LAI and FPAR phytoproductivity for the territory of the Klyazma basin as a whole, and for each basin included in it were determined. The analysis of the dynamics of changes occurring in the structure of land use is carried out. For the territory of Vladimir region, which is a part of the Klyazma River basin, an assessment of soil types distribution over occupied area was carried out. An integral indicator of soil fertility was calcu-lated on the basis of statistical data of agrochemical indicators. The fraction of fallow lands decreased by 2019 and it amounts 33.76% of the total area of the studied territory. The fraction of mixed forests increased from 38.48% in 2001 to 44.50% in 2019 due to the formation of fast-growing tree species shoots on fallow lands. The area of meadow vegetation for the period from 2015 to 2019 decreased by 3.5%, from 4 276 to 3 121 km2, due to agriculture degradation and a significant decrease in livestock grazing. The indicator of soil fertility for the Klyazma basin was 0.74, which is a high indicator. It is established that the most active decrease in the agricultural land area occurs in the central, north-western and western parts of the river basin.


2008 ◽  
Vol 17 (5) ◽  
pp. 602 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Volker C. Radeloff ◽  
Nicholas S. Keuler ◽  
Robert S. Taylor ◽  
Todd J. Hawbaker ◽  
...  

Humans influence the frequency and spatial pattern of fire and contribute to altered fire regimes, but fuel loading is often the only factor considered when planning management activities to reduce fire hazard. Understanding both the human and biophysical landscape characteristics that explain how fire patterns vary should help to identify where fire is most likely to threaten values at risk. We used human and biophysical explanatory variables to model and map the spatial patterns of both fire ignitions and fire frequency in the Santa Monica Mountains, a human-dominated southern California landscape. Most fires in the study area are caused by humans, and our results showed that fire ignition patterns were strongly influenced by human variables. In particular, ignitions were most likely to occur close to roads, trails, and housing development but were also related to vegetation type. In contrast, biophysical variables related to climate and terrain (January temperature, transformed aspect, elevation, and slope) explained most of the variation in fire frequency. Although most ignitions occur close to human infrastructure, fires were more likely to spread when located farther from urban development. How far fires spread was ultimately related to biophysical variables, and the largest fires in southern California occurred as a function of wind speed, topography, and vegetation type. Overlaying predictive maps of fire ignitions and fire frequency may be useful for identifying high-risk areas that can be targeted for fire management actions.


2015 ◽  
Vol 19 (3) ◽  
pp. 1457-1467 ◽  
Author(s):  
A. Tilmant ◽  
G. Marques ◽  
Y. Mohamed

Abstract. Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins have become more and more developed, downstream water users and ecosystems have become increasingly dependent on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoir operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding hypothetical transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.


Author(s):  
Andrew Allen ◽  
Bruno J. Ens ◽  
Martijn van de Pol ◽  
Magali Frauendorf ◽  
Henk-Jan van der Kolk ◽  
...  

2010 ◽  
Vol 1 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Rex R. Johnson ◽  
Diane A. Granfors ◽  
Neal D. Niemuth ◽  
Michael E. Estey ◽  
Ronald E. Reynolds

Abstract Conservation of birds is increasingly focused on the importance of landscape characteristics to sustain populations. Implementing conservation on a landscape scale requires reliable spatial models that provide biological context for conservation actions. Before species-specific models relating grassland birds to their habitat at landscape scales existed, we created a conceptual model and applied it to spatial data to identify priority grassland habitats for the protection and restoration of populations of area sensitive grassland birds in the Prairie Pothole Region. Since that time, these Grassland Bird Conservation Areas have been widely used to guide conservation, and variations of these models have been adopted in other regions; however, the process used to delineate them (i.e., the conceptual models) is poorly understood by many users. We describe that process here and offer perspectives on the utility and limitations of conceptual models, especially on the value of making assumptions that commonly underlie management decisions explicitly, thereby making the assumptions testable, and hopefully increasing management transparency, credibility, and efficiency.


2018 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Felix Koffi KONAN ◽  
Charles Koffi BOUSSOU ◽  
Yves Kotchi BONY ◽  
Mexmin Koffi KONAN ◽  
Edia Oi EDIA ◽  
...  

Malapterurus teugelsi Norris, 2002, an endemic electric catfishes of the Kogon River Basin in Guinea, is assessed as Near Threatened due to its restricted distribution area, fishing pressure, mining activities, loss of habitats and aquatic pollution. This fish has a high cultural representation in the folklore of the local population. Moreover, in addition to its very limited distribution, very little information exists on its reproductive biology and its food ecology. Therefore, singular care must be paid to it for its conservation.


Sign in / Sign up

Export Citation Format

Share Document