Mixed Ramsey Numbers Revisited

2003 ◽  
Vol 12 (5-6) ◽  
pp. 653-660
Author(s):  
C. C. Rousseau ◽  
S. E. Speed

Given a graph Hwith no isolates, the (generalized) mixed Ramsey number is the smallest integer r such that every H-free graph of order r contains an m-element irredundant set. We consider some questions concerning the asymptotic behaviour of this number (i) with H fixed and , (ii) with m fixed and a sequence of dense graphs, in particular for the sequence . Open problems are mentioned throughout the paper.

10.37236/2160 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Luis Boza ◽  
Janusz Dybizbański ◽  
Tomasz Dzido

For given graphs $H_{1}, H_{2}, H_{3}$, the 3-color Ramsey number $R(H_{1},$ $H_{2}, H_{3})$ is the smallest integer $n$ such that if we arbitrarily color the edges of the complete graph of order $n$ with $3$ colors, then it always contains a monochromatic copy of $H_{i}$ colored with $i$, for some $1 \leq i \leq 3$.We study the bounds on 3-color Ramsey numbers $R(H_1,H_2,H_3)$, where $H_i$ is an isolate-free graph different from $K_2$ with at most four vertices, establishing that $R(P_4,C_4,K_4)=14$, $R(C_4,K_3,K_4-e)=17$, $R(C_4,K_3+e,K_4-e)=17$, $R(C_4,K_4-e,K_4-e)=19$, $28\le R(C_4,K_4-e,K_4)\le36$, $R(K_3,K_4-e,K_4)\le41$, $R(K_4-e,K_4-e,K_4)\le59$ and $R(K_4-e,K_4,K_4)\le113$. Also, we prove that $R(K_3+e,K_4-e,K_4-e)=R(K_3,K_4-e,K_4-e)$, $R(C_4,K_3+e,K_4)\le\max\{R(C_4,K_3,K_4),29\}\le32$, $R(K_3+e,K_4-e,K_4)\le\max\{R(K_3,K_4-e,K_4),33\}\le41$ and $R(K_3+e,K_4,K_4)\le\max\{R(K_3,K_4,K_4),2R(K_3,K_3,K_4)+2\}\le79$.This paper is an extension of the article by Arste, Klamroth, Mengersen [Utilitas Mathematica, 1996].


10.37236/3684 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Jan Goedgebeur ◽  
Stanisław P. Radziszowski

Using computer algorithms we establish that the Ramsey number $R(3,K_{10}-e)$ is equal to 37, which solves the smallest open case for Ramsey numbers of this type. We also obtain new upper bounds for the cases of $R(3,K_k-e)$ for $11 \le k \le 16$, and show by construction a new lower bound $55 \le R(3,K_{13}-e)$.The new upper bounds on $R(3,K_k-e)$ are obtained by using the values and lower bounds on $e(3,K_l-e,n)$ for $l \le k$, where $e(3,K_k-e,n)$ is the minimum number of edges in any triangle-free graph on $n$ vertices without $K_k-e$ in the complement. We complete the computation of the exact values of $e(3,K_k-e,n)$ for all $n$ with $k \leq 10$ and for $n \leq 34$ with $k = 11$, and establish many new lower bounds on $e(3,K_k-e,n)$ for higher values of $k$.Using the maximum triangle-free graph generation method, we determine two other previously unknown Ramsey numbers, namely $R(3,K_{10}-K_3-e)=31$ and $R(3,K_{10}-P_3-e)=31$. For graphs $G$ on 10 vertices, besides $G=K_{10}$, this leaves 6 open cases of the form $R(3,G)$. The hardest among them appears to be $G=K_{10}-2K_2$, for which we establish the bounds $31 \le R(3,K_{10}-2K_2) \le 33$.


10.37236/791 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paweł Prałat

In this paper, we consider the on-line Ramsey numbers $\overline{\cal R} (k,l)$ for cliques. Using a high performance computing networks, we 'calculated' that $\overline{\cal R}(3,4)=17$. We also present an upper bound of $\overline{\cal R}(k,l)$, study its asymptotic behaviour, and state some open problems.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
M. M. M. Jaradat ◽  
M. S. A. Bataineh ◽  
S. M. E. Radaideh

The graph Ramsey number is the smallest integer with the property that any complete graph of at least vertices whose edges are colored with two colors (say, red and blue) contains either a subgraph isomorphic to all of whose edges are red or a subgraph isomorphic to all of whose edges are blue. In this paper, we consider the Ramsey numbers for theta graphs. We determine , for . More specifically, we establish that for . Furthermore, we determine for . In fact, we establish that if is even, if is odd.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.


10.37236/9071 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Xiaoyu He ◽  
Yuval Wigderson

A weakly optimal $K_s$-free $(n,d,\lambda)$-graph is a $d$-regular $K_s$-free graph on $n$ vertices with $d=\Theta(n^{1-\alpha})$ and spectral expansion $\lambda=\Theta(n^{1-(s-1)\alpha})$, for some fixed $\alpha>0$. Such a graph is called optimal if additionally $\alpha = \frac{1}{2s-3}$. We prove that if $s_{1},\ldots,s_{k}\ge3$ are fixed positive integers and weakly optimal $K_{s_{i}}$-free pseudorandom graphs exist for each $1\le i\le k$, then the multicolor Ramsey numbers satisfy\[\Omega\Big(\frac{t^{S+1}}{\log^{2S}t}\Big)\le r(s_{1},\ldots,s_{k},t)\le O\Big(\frac{t^{S+1}}{\log^{S}t}\Big),\]as $t\rightarrow\infty$, where $S=\sum_{i=1}^{k}(s_{i}-2)$. This generalizes previous results of Mubayi and Verstra\"ete, who proved the case $k=1$, and Alon and Rödl, who proved the case $s_1=\cdots = s_k = 3$. Both previous results used the existence of optimal rather than weakly optimal $K_{s_i}$-free graphs.


10.37236/2125 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Gaku Liu

Let $Q(n,c)$ denote the minimum clique number over graphs with $n$ vertices and chromatic number $c$. We investigate the asymptotics of $Q(n,c)$ when $n/c$ is held constant. We show that when $n/c$ is an integer $\alpha$, $Q(n,c)$ has the same growth order as the inverse function of the Ramsey number $R(\alpha+1,t)$ (as a function of $t$). Furthermore, we show that if certain asymptotic properties of the Ramsey numbers hold, then $Q(n,c)$ is in fact asymptotically equivalent to the aforementioned inverse function. We use this fact to deduce that $Q(n,\lceil n/3 \rceil)$ is asymptotically equivalent to the inverse function of $R(4,t)$.


Author(s):  
Hantao Zhang

The theory of combinatorial designs has always been a rich source of structured, parametrized families of SAT instances. On one hand, design theory provides interesting problems for testing various SAT solvers; on the other hand, high-performance SAT solvers provide an alternative tool for attacking open problems in design theory, simply by encoding problems as propositional formulas, and then searching for their models using off-the-shelf general purpose SAT solvers. This chapter presents several case studies of using SAT solvers to solve hard design theory problems, including quasigroup problems, Ramsey numbers, Van der Waerden numbers, covering arrays, Steiner systems, and Mendelsohn designs. It is shown that over a hundred of previously-open design theory problems were solved by SAT solvers, thus demonstrating the significant power of modern SAT solvers. Moreover, the chapter provides a list of 30 open design theory problems for the developers of SAT solvers to test their new ideas and weapons.


2009 ◽  
Vol 18 (1-2) ◽  
pp. 247-258 ◽  
Author(s):  
PO-SHEN LOH ◽  
BENNY SUDAKOV

For two graphs S and T, the constrained Ramsey number f(S, T) is the minimum n such that every edge colouring of the complete graph on n vertices (with any number of colours) has a monochromatic subgraph isomorphic to S or a rainbow subgraph isomorphic to T. Here, a subgraph is said to be rainbow if all of its edges have different colours. It is an immediate consequence of the Erdős–Rado Canonical Ramsey Theorem that f(S, T) exists if and only if S is a star or T is acyclic. Much work has been done to determine the rate of growth of f(S, T) for various types of parameters. When S and T are both trees having s and t edges respectively, Jamison, Jiang and Ling showed that f(S, T) ≤ O(st2) and conjectured that it is always at most O(st). They also mentioned that one of the most interesting open special cases is when T is a path. In this paper, we study this case and show that f(S, Pt) = O(st log t), which differs only by a logarithmic factor from the conjecture. This substantially improves the previous bounds for most values of s and t.


Sign in / Sign up

Export Citation Format

Share Document