Promotion of glucose utilization by insulin enhances granulosa cell proliferation and developmental competence of porcine oocyte grown in vitro

Zygote ◽  
2016 ◽  
Vol 25 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Nobuhiko Itami ◽  
Yasuhisa Munakata ◽  
Koumei Shirasuna ◽  
Takehito Kuwayama ◽  
Hisataka Iwata

SummaryIn vitro culture of the oocyte granulosa cell complexes (OGCs) from early antral follicles (EAFs) shows granulosa cell (GC) proliferation, but to a lesser extent than that observed in vivo during follicle development. As the number of GCs closely relates to energy sufficiency of the oocytes, enhancement of GC proliferation influences oocyte development. GC proliferation depends on glycolysis and insulin-mediated AKT/mTOR signaling pathway; therefore, addition of culture medium containing insulin and glucose may potentially promote GC proliferation and hence improve oocyte development. In the present study, we assessed the effect of exogenous insulin and glucose concentration on GC proliferation and oocyte energy status as well as developmental abilities of porcine oocytes grown in vitro. In the presence of 5.5 mM of glucose (Low), a comparison of 10 versus 20 μg/ml insulin showed that high insulin enhanced GC proliferation but exhausted glucose from the medium, which resulted in low energy status including lipid and adenosine triphosphate of the oocyte. Whereas, in the presence of 20 μg/ml insulin, medium with 11 mM glucose (High) enhanced GC proliferation and oocyte energy status as well as developmental ability up to the blastocyst stage. Considering that there was no difference in OGCs development observed with medium (10 μg/ml insulin) containing 5.5 versus 11 mM glucose, we concluded that the combination of high insulin and glucose enhanced GC proliferation and energy status of oocytes as well as the developmental ability of the oocytes grown in vitro.

2009 ◽  
Vol 21 (1) ◽  
pp. 129
Author(s):  
J. G. Zhao ◽  
J. W. Ross ◽  
Y. H. Hao ◽  
D. M. Wax ◽  
L. D. Spate ◽  
...  

Somatic cell nuclear transfer (SCNT) is a promising technology with potential applications in both agriculture and regenerative medicine. The reprogramming of differentiated somatic nuclei into totipotent embryonic state following NT is not efficient and the mechanism is currently unknown. However, accumulating evidence suggests that faulty epigenetic reprogramming is likely to be the major cause of low success rates observed in all mammals produced through SCNT. It has been demonstrated that increased histone acetylation in reconstructed embryos by applying histone deacetylases inhibitor (HDACi) such as trychostatin A (TSA) significantly enhanced the developmental competence in several species in vitro and in vivo. However TSA has been known to be teratogenic. Compared with TSA, Scriptaid is a low toxic but more efficient HDACi (Su GH et al. 2000 Cancer Res. 60, 3137–3142). The objectives of this study were: 1) to investigate and optimize the application Scriptaid to the NT using Landrace fetal fibroblast cells (FFCs) as donor; 2) investigate the effect of increased histone acetylation on the developmental competence of reconstructed embryos from NIH mini inbred FFCs in vitro and in vivo. The reconstructed embryos were treated with Scriptaid at different concentrations (0 nm, 250 nm, 500 nm and 1000 nm) after activation for 14 to 16 h. IVF embryos without treatment were produced as an additional control. Developmental rates to the 2-cell and blastocyst stage were determined. Developmental potential was determined by transferring Day 1 NT zygotes to the oviducts of surrogates on the day of, or one day after, the onset of estrus. Experiments were repeated at least 3 times and data were analyzed with chi-square tests using SAS 6.12 program (SAS institute, Inc., Cary, NC, USA). The percentage blastocyst of cloned embryos using Landrace FFCs as donors treated with 500 nm Scriptaid was the highest and was significantly higher than untreated group (25% v. 11%, P < 0.05). Percent cleaved was not different among four treatment groups. We used 500 nm Scriptaid for 14 to 16 h after activation for all subsequent experiments. Developmental rate to the blastocyst stage was significantly increased in cloned embryos derived from NIH mini inbred FFCs after treating with Scriptaid (21% v. 9%, P < 0.05), while the blastocyst rate in IVF group was 30%. Embryo transfer (ET) results showed that 5/6 (Transferred embryos No. were 190, 109, 154, 174, 152, and 190, respectively) surrogates (83%) became pregnant resulting in 2 healthy piglets from 2 litters (recipients received 190 and 154 embryos, respectively) in the Scriptaid treatment group, while no pregnancies were obtained in the untreated group from 5 ET (Embryos transferred No. are 140, 163, 161, 151 and 151, respectively). These results suggest that 500 nm Scriptaid treatment following activation increase both the in vitro and in vivo development of porcine SCNT embryos from NIH mini inbred FFCs and the hyperacetylation might actually improve reprogramming of the somatic nuclei after NT. Funding from the National Institutes of Health National Center for Research Resources RR018877.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Michiko Nakai ◽  
Hiroyuki Kaneko ◽  
Tamas Somfai ◽  
Naoki Maedomari ◽  
Manabu Ozawa ◽  
...  

Xenografting of testicular tissue into immunodeficient mice is known to be a valuable tool for facilitating the development of immature germ cells present in mammalian gonads. Spermatogenesis in xenografts and/or in vitro embryonic development to the blastocyst stage after ICSI of xenogeneic sperm has already been reported in large animals, including pigs; however, development of the embryos to term has not yet been confirmed. Therefore, in pigs, we evaluated the in vivo developmental ability of oocytes injected after ICSI of xenogeneic sperm. Testicular tissues prepared from neonatal piglets, which contain seminiferous cords consisting of only gonocytes/spermatogonia, were transplanted under the back skin of castrated nude mice. Between 133 and 280 days after xenografting, morphologically normal sperm were recovered, and a single spermatozoon was then injected into an in vitro matured porcine oocyte. After ICSI, the oocytes were electrostimulated and transferred into estrus-synchronized recipients. Two out of 23 recipient gilts gave birth to six piglets. Here, we describe for the first time that oocytes fertilized with a sperm from ectopic xenografts have the ability to develop to viable offspring in large mammals.


Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 355-366 ◽  
Author(s):  
Kazuhiro Kikuchi ◽  
Hans Ekwall ◽  
Paisan Tienthai ◽  
Yasuhiro Kawai ◽  
Junko Noguchi ◽  
...  

Lipid content in mammalian oocytes or embryos differs among species, with bovine and porcine oocytes and embryos showing large cytoplasmic droplets. These droplets are considered to play important roles in energy metabolism during oocyte maturation, fertilisation and early embryonic development, and also in the freezing ability of oocytes or embryos; however, their detailed distribution or function is not well understood. In the present study, changes in the distribution and morphology of porcine lipid droplets during in vivo and in vitro fertilisation, in contrast to parthenogenetic oocyte activation, as well as during their development to blastocyst stage, were evaluated by transmission electron microscopy (TEM). The analysis of semi-thin and ultra-thin sections by TEM showed conspicuous, large, electron-dense lipid droplets, sometimes associated with mitochondrial aggregates in the oocytes, irrespective of whether the oocytes had been matured in vivo or in vitro. Immediately after sperm penetration, the electron density of the lipid droplets was lost in both the in vivo and in vitro oocytes, the reduction being most evident in the oocytes developed in vitro. Density was restored in the pronculear oocytes, fully in the in vivo specimens but only partially in the in vitro ones. The number and size of the droplets seemed, however, to have decreased. At 2- to 4-cell and blastocyst stages, the features of the lipid droplets were almost the same as those of pronuclear oocytes, showing a homogeneous or saturated density in the in vivo embryos but a marbled or partially saturated appearance in the in vitro embryos. In vitro matured oocytes undergoing parthenogenesis had lipid droplets that resembled those of fertilised oocytes until the pronuclear stage. Overall, results indicate variations in both the morphology and amount of cytoplasmic lipid droplets during porcine oocyte maturation, fertilisation and early embryo development as well as differences between in vivo and in vitro development, suggesting both different energy status during preimplantation development in pigs and substantial differences between in vitro and in vivo development.


2005 ◽  
Vol 17 (6) ◽  
pp. 593 ◽  
Author(s):  
Katherine M. Morton ◽  
Sally L. Catt ◽  
W. M. Chis Maxwell ◽  
Gareth Evans

Experiments were conducted to determine the effects of lamb age, hormone stimulation (Experiment 1) and response to stimulation (Experiment 2) on the in vitro production of embryos from prepubertal lambs aged 3–4 and 6–7 weeks of age. For 3–4-week-old lambs, hormone stimulation increased the number of follicles (29.9 ± 15.3 v. 70.6 ± 8.2), oocytes per ovary (18.3 ± 6.3 v. 39.3 ± 5.8) and oocyte development to the blastocyst stage (0/192 (0.0%) v. 115/661 (17.4%); P < 0.05). Lamb age (3–4 v. 6–7 weeks old) increased oocyte development to the blastocyst stage (115/661 (17.4%) v. 120/562 (21.4%) respectively). In Experiment 2, hormone-stimulated lambs (3–4 and 6–7 weeks old) were divided into low, medium or high responders based on the number of ovarian follicles (<20, 20–50 and >100 follicles per ovary respectively). The response to hormone stimulation did not affect oocyte recovery rate, but the number of oocytes suitable for culture was increased for high-responding 3–4-week-old lambs only (P < 0.05). Oocyte development to the blastocyst stage was not affected by response to stimulation for 3–4-week-old lambs (15.2–25.6%; P > 0.05), but was reduced for high (6.7%) compared with low (19.5%) and medium (30.9%) responding 6–7-week-old lambs (P < 0.05). These results demonstrate that the production of embryos from prepubertal lambs is increased by hormone stimulation and lamb age and the response to stimulation does not affect embryo production from 3–4-week-old lambs, although by 6–7 weeks of age a high response to stimulation reduces blastocyst formation.


2021 ◽  
Vol 22 (2) ◽  
pp. 579
Author(s):  
Seok Hee Lee

An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.


2009 ◽  
Vol 21 (1) ◽  
pp. 218
Author(s):  
Y. Akaki ◽  
K. Yoshioka ◽  
H. Funahashi

Exposure of porcine oocyte–cumulus complexes (OCC) to gonadotropins induces meiotic resumption, but the details of this mechanism are still unknown. The present study was undertaken to examine combinational effects of EGF-like factors and dibutyryl cyclic AMP (dbcAMP) in a chemically defined medium on in vitro maturation (IVM) of porcine oocytes. The OCC were aspirated from 3- to 6-mm-diameter follicles of prepuberal ovaries and used in the current study. The basic culture medium was a chemically defined medium, Porcine Oocyte Medium (POM; Research Institute for the Functional Peptides, Yamagata, Japan). In the first experiment, various concentrations (0, 10, and 1000 ng mL–1) of EGF-like factors (EGF, amphiregulin, and betacellulin) were added to POM during an entire IVM period (44 h). In the second experiment, to determine the additive effect of EGF-like factors, each EGF-like factor with an effective concentration was combined with the others. In the last experiment, to examine the combined effect with dbcAMP, OCC were exposed to EGF (10 ng mL–1), amphiregulin (1000 ng mL–1), and dbcAMP (1 mm) during the first 20 h of IVM and then the culture was continued in the absence of EGF-like factors and dbcAMP. After culture, in all experiments, meiotic resumption and the progress of oocytes were examined after denuding, fixing, and staining. Statistical analyses was performed by ANOVA with a Bonferroni-Dunn post hoc test (significance, P < 0.05). In the first experiment, all treatments without supplementation with 10 ng mL–1 amphiregulin increased the incidence of oocytes maturing to the MII phase, as compared with controls (29.1 to 39.3% v. 11.1%, P < 0.05). In the second experiment, combinations with 2 kinds of EGF-like factor slightly (but not significantly) improved the percentage of oocytes at the MII stage (37.7 to 47.4%). In the last experiment, supplementation with 1 mm dbcAMP during the first 20 h of IVM, regardless of the presence of EGF-like factors, significantly increased the incidence of MII oocytes as compared with controls, whereas the incidence was the highest when 1 mm dbcAMP, 10 ng mL–1 EGF, and 1000 ng mL–1 amphiregulin were supplemented (75.5%). When those oocytes were cultured in a chemically defined medium after in vitro fertilization, the developmental competence of oocytes to the blastocyst stage (25.0%) was not different from oocytes matured in the presence of gonadotropins and dbcAMP during the first 20 h of IVM (17.3%). These observations indicate that supplementation of a chemically defined maturation medium with EGF-like factors and dbcAMP during the first 20 h of IVM can support the meiotic progress and developmental competence of porcine oocytes well. Currently, we are examining the developmental competence of those oocytes after embryo transfer. The results will be presented at the meeting. This study was supported by MAFF AgriBio1605.


2013 ◽  
Vol 25 (1) ◽  
pp. 266
Author(s):  
S. Matoba ◽  
S. Sugimura ◽  
H. Matsuda ◽  
Y. Aikawa ◽  
M. Ohtake ◽  
...  

Recently, we reported that high rates of good-quality blastocysts can be produced by IVF of in vivo-matured oocytes, obtained by ovum pick-up (OPU) after superstimulation in Holstein cows, with X-sorted sperm [Matoba et al. 2012 Reprod. Domest. Anim. 47(Suppl. 4), 515]. However, we have limited knowledge concerning the normality of embryonic cleavages in such embryos. The present study examined their kinetics and pattern of the first cell cycle. In vivo-matured oocytes were collected by OPU from non-lactating Holstein cows just before ovulation after superstimulation and ovulation induction by gonadotropin-releasing hormone. The oocytes were inseminated with 5 × 106 sperm mL–1 of X-sorted sperm and cultured in CR1aa supplemented with 5% newborn calf serum and 0.25 mg mL–1 of linoleic acid albumin at 38.5°C in 5% CO2, 5% O2, and 90% N2 for 216 h. Embryo kinetics were observed individually using a microwell culture dish and time-lapse cinematography (CCM-1.4MZS, Astec, Fukuoka, Japan) (Sugimura et al. 2010 Biol. Reprod. 83, 970–978). Photographs of each embryo were taken every 15 min during the in vitro culture period, and images were analysed by CCM-1.4 software (Astec). The cleavage pattern was categorised into normal cleavage (2 even blastomeres without fragment or protrusion) or abnormal cleavage (those with 2 uneven blastomeres, with fragments or protrusions and those dividing into 3 to 5 blastomeres at the first cleavage). Data were analysed by ANOVA, chi-square, and discriminant function. A total of 117 embryos were examined; of this number, 63.2% developed to the blastocyst stage and the rest were degenerated. A high rate of normal cleavage and a low rate of abnormal cleavage, including those with 2 uneven blastomeres and those with fragments or protrusions in the first cleavage pattern, were recorded in embryos that could develop to blastocysts compared with degenerated ones (P < 0.01 or P < 0.05, respectively; Table 1). No significant difference was found in those dividing into 3 to 5 blastomeres between the blastocysts and degenerated embryos (Table 1). Embryos developing to the blastocyst stage had a shorter duration of the first cell cycle [27.2 ± 2.3 h post-insemination (hpi)] compared with those undergoing degeneration (30.6 ± 5.7 hpi; P < 0.001). The threshold of duration of the first cell cycle was calculated by (X – 27.2)/2.3 = (30.6 – X)/5.7, resulting in X = 28.2. Blastocysts with a short duration of the first cell cleavage (≤28.2 hpi) showed a higher frequency of the normal cleavage pattern than those with a duration of the first cell cleavage longer than 28.2 hpi (71.7 and 53.6%, respectively; P < 0.05). Our results revealed that those IVF embryos that finished their first cleavage before 28.2 h of IVF and showed a normal cleavage pattern had superior developmental competence. Table 1.The first cleavege pattern reflects the developmental competence: blastocysts versus degenerated embryos This work was supported by the Research and Development Projects for Application in Promoting New Policy of Agriculture, Forestry and Fisheries (22016).


2013 ◽  
Vol 25 (1) ◽  
pp. 265
Author(s):  
K. Knauer ◽  
H. Stinshoff ◽  
S. Wilkening ◽  
C. Wrenzycki

It is known that the progesterone (P4) provided by the corpus luteum is essential for the maintenance of pregnancy. It has been suggested that supplying external P4 in vivo is beneficial to the establishment and upkeep of pregnancy. The aim of the present study was to assess the effects of supplementation with different concentrations of P4 on either of 2 days of in vitro culture (IVC) on early bovine embryo development in an in vitro model. A total of 5073 cumulus–oocyte complexes were matured and fertilized in vitro. Before culture, they were collected in groups of 30 and allocated to 1 of 9 groups. The groups were supplemented with 10, 20, or 100 ng of P4 on Days 4 or 5 of IVC (IVF = Day 0). Alcohol (ETOH) was used as the solvent, so 8 µL of ETOH was used per supplementation. Therefore, two additional groups were supplemented with only ETOH on Day 4 or 5 of IVC. The presumptive zygotes allocated to group 9 were not supplemented. A culture system without oil overlay was used to prevent the lipophilic P4 from moving into the oil. Embryo cleavage and development rates were determined solely on Day 8 of IVC. Single expanded blastocysts were stored at –80°C for RT-qPCR. Subsequently, the relative amounts of six developmentally important gene transcripts (IGF1R, SLC2A1, HSD3B1, IFNT, PGRMC1, and PGRMC2) were analysed in single embryos of all groups. Statistical analysis was performed using one-way and two-way ANOVA, and the level of significance was set at P ≤ 0.05. Cleavage and development rates did not differ among groups (see Table 1). The relative abundance of IGF1R, SLC2A1, PGRMC1, and PGRMC2 was not affected by either the concentration or the timing of P4 supplementation. Nevertheless, there was a statistically significant interaction between the day of treatment and the concentration used for the expression of HSD3B1 mRNA. When 20 ng of P4 was added on Day 5 of IVC, significantly more HSD3B1 transcripts were detected than if 10 ng, 100 ng, or ETOH alone was added. The expression of IFNT was not affected by the day of supplementation, only by the concentration used. Thus, supplementation with 20 ng of P4 resulted in a significantly higher level of transcripts than when 10 ng or ETOH was supplemented. The results indicate that the amount of P4 present during early embryonic development and the timing of its presence had an impact on molecular developmental competence. However, no effects concerning morphological development up to the blastocyst stage could be detected. Table 1.Cleavage and development rates (± SEM) of embryos supplemented with 10, 20, or 100 ng on Day 4 or 5 of in vitro culture (P ≥ 0.05) The financial support of the FBF e.V. is acknowledged.


2015 ◽  
Vol 27 (1) ◽  
pp. 244 ◽  
Author(s):  
F. Zacchini ◽  
P. Toschi ◽  
P. Loi ◽  
G. E. Ptak

Oocyte maturation process includes the establishment of proper epigenetics marks, fundamental to ensure successful pregnancy. Epigenetic maturation of the oocyte depends on one-carbon-metabolism (OCM), whose key elements (cobalamin, folate) are crucial cofactors for the transfer of methyl groups onto chromatin. Commercially available IVM-media only partially supports oocyte metabolic requirements, and thus may negatively affect epigenetic maturation. Of relevance, cobalamin, one of the OCM cofactors normally present in follicular fluid, is missing in IVM-media. We investigated if cobalamin supplementation of IVM media affects sheep oocyte developmental competence in term of subsequent embryo development, epigenetic pattern, and fetal survival. Briefly, sheep oocytes were isolated from ovaries and divided into 2 groups: an untreated control (in vitro CTR group) and oocytes in vitro matured in medium containing cobalamin at 200 p.m. (Cobalamin group). Following maturation, MII oocytes were in vitro fertilized and cultured until blastocyst stage. A cohort of blastocysts was surgically transferred to recipient ewes and then conceptuses were collected at 20 days of pregnancy. Naturally mated conceptuses were also collected (in vivo CTR group). In vitro-matured oocytes and -derived blastocysts were analysed (i) by immunofluorescence anti-5-methylcitydine and (ii) by qRT-PCR for the expression of a panel of genes (MATb, ACHY, CBS, MTHFR, DNMT1) involved in OCM pathway. Immunofluorescence results were analysed by Image J software. Decimal variables were analysed using the Mann-Whitney test, while variables were expressed as percentage with the Fisher exact test. Cobalamin exposure during IVM significantly increased (i) cleavage rate (cobalamin 130/220 v. in vitro CTR 134/191, P < 0.02) following in vitro fertilization and (ii) global DNA methylation in blastocyst-stage embryos (P < 0.05). Then, qRT-PCR analysis of a select panel of OCM genes following IVM supplemented with cobalamin revealed a downregulation of MATb, ACHY, and DNMT1 in cobalamin-treated oocytes v. in vitro CTR group (P < 0.05), while no differences were observed at blastocyst stage. Finally, we found that the survival rate at 20 days of pregnancy was comparable in in vitro-produced (IVP) embryos from cobalamin and in vitro CTR oocytes, but reduced compared to in vivo CTR (cobalamin 60%, in vitro CTR 72%, and in vivo CTR 100%). Altogether, our results showed that cobalamin supplementation in IVM medium positively affects competence of oocytes and methylation profile at the blastocyst stage, presumably through the OCM pathway. Moreover, postimplantation survival of IVP conceptus, derived from untreated and treated oocytes, was reduced compared to naturally mated ones. Further investigation will clarify whether cobalamin supplementation influences fetal and placental development of IVP conceptus.


2017 ◽  
Vol 29 (1) ◽  
pp. 150 ◽  
Author(s):  
L. D. Spate ◽  
S. L. Murphy ◽  
J. A. Benne ◽  
A. Giraldo ◽  
D. Hylan ◽  
...  

It has long been thought that oocytes obtained from sows yielded a higher level of developmental competence compared with oocytes obtained from prepubertal gilts. Because gilt-derived oocytes are more readily available to our laboratory and they are less developmentally competent, we hypothesised that by making alterations to our maturation system we could improve the developmental competence of the gilt-derived oocytes to that of their sow-derived counterparts. We performed 2 experiments that evaluated the ability of each source of oocyte to develop to the blastocyst stage, using altered maturation media. The first experiment focused on the developmental ability of each source of oocytes, through IVF and culture. The second experiment again focused on the developmental competence of each oocyte source but through somatic cell NT. For both experiments, the sow-derived oocytes were obtained from Desoto Biosciences and the gilt ovaries were collected from Smithfield Inc. in Milan, Missouri. Both sets of oocytes were in vitro matured in M199 supplemented with 0.57 mM cysteine, 5 μg mL−1 LH and FSH, and 10 ng mL−1 epidermal growth factor; however, the gilt derived media was altered to contain 40 ng mL−1 fibroblast growth factor 2 and 20 ng mL−1 insulin-like growth factor and leukemia inhibitory factor. Additionally, the maturation media for the sow-derived oocytes contained the addition of 5 μg mL−1 insulin and 10% follicular fluid. In the first experiment we performed IVF on oocytes from the 2 sources as per our laboratory standard IVF procedure, co-incubating the oocytes with 0.25 × 106 porcine semen for 4 h, followed by washing and moving the oocytes to MU2 culture media at 38.50°C in 5% CO2, humidified air overnight. After overnight culture the presumptive zygotes were transferred to the same conditions with 5% CO2, 5% O2, and 90% N2. After an additional 5 days, blastocyst development was assessed. The gilt oocytes yielded 39.3a ± 7.2% blastocyst, and the sow oocytes had a blastocyst rate of 24.9b ± 6.9%, with an n of 389 and 313, respectfully. Statistical analysis was performed by using Genmod in SAS 9.4. In the second experiment, using standard laboratory protocol for somatic cell NT, we activated both sets of oocytes with 200 μM thimerosal for 10 min followed by 30-min incubation with 4 mM dithiothreitol. The embryos were co-incubated for 15 h with 500 nM Scriptaid in the MU2 culture media in 5% CO2, humidified air; then these embryos were also moved to 5% CO2, 5% O2, and 90% N2 and cultured to Day 6. The sow oocytes produced a blastocyst percentage of 38.6%, and the gilt oocyte group had a blastocyst percentage of 43.5%, with an n of 290 and 285, respectfully. There was no difference statistically between these treatments. Both gilt and the sow oocyte sources have yielded live piglets at this time. We concluded that the maturation system used for our gilt-derived oocytes resulted in equal or better development in vitro compared with the sow-derived oocytes. Follow-up experiments evaluating in vivo development are needed for a complete comparison. This work was funded by Food for the 21st Century University of MO, and the NIH U42OD011140.


Sign in / Sign up

Export Citation Format

Share Document