Effects of melatonin on production of reactive oxygen species and developmental competence of bovine oocytes exposed to heat shock and oxidative stress duringin vitromaturation

Zygote ◽  
2019 ◽  
Vol 27 (3) ◽  
pp. 180-186 ◽  
Author(s):  
Fernanda de Castro Cavallari ◽  
Cláudia Lima Verde Leal ◽  
Roth Zvi ◽  
Peter J. Hansen

SummaryHeat shock may disrupt oocyte function by increasing the generation of reactive oxygen species (ROS). We evaluated the capacity of the antioxidant melatonin to protect oocytes using two models of oxidative stress – heat shock and the pro-oxidant menadione. Bovine cumulus–oocyte complexes (COC) were exposed in the presence or absence of 1 µM melatonin to the following treatments during maturation: 38.5°C, 41°C and 38.5°C+5 µM menadione. In the first experiment, COC were matured for 3 h with 5 µM CellROX® and analyzed by epifluorescence microscopy to quantify production of ROS. The intensity of ROS was greater for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin reduced ROS intensity for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. In the second experiment, COC were matured for 22 h. After maturation, oocytes were fertilized and the embryos cultured for 7.5 days. The proportion of oocytes that cleaved after fertilization was lower for oocytes exposed to heat shock and menadione than for control oocytes. Melatonin increased cleavage for heat-shocked oocytes and oocytes exposed to menadione, but not for control oocytes. Melatonin tended to increase the developmental competence of embryos from heat-shocked oocytes but not for embryos from oocytes exposed to menadione or from control oocytes. In conclusion, melatonin reduced production of ROS of maturing oocytes and protected oocytes from deleterious effects of both stresses on competence of the oocyte to cleave after coincubation with sperm. These results suggest that excessive production of ROS compromises oocyte function.

2008 ◽  
Vol 54 (12) ◽  
pp. 977-983 ◽  
Author(s):  
Radoslav I. Abrashev ◽  
Svetlana B. Pashova ◽  
Lilyana N. Stefanova ◽  
Spassen V. Vassilev ◽  
Pavlina A. Dolashka-Angelova ◽  
...  

To extend the knowledge about the relationship between heat shock and oxidative stress in lower eukaryotes, the filamentous fungus Aspergillus niger 26 was chosen as a model system. Here, the response of A. niger cells to heat shock is reported. The temperature treatment significantly increased the levels of reactive oxygen species, superoxide anions (O2•–), and hydrogen peroxide and the rate of cyanide-resistant respiration as a marker of oxidative stress. Enhanced reactive oxygen species generation coincided with an increase in the content of oxidative damaged protein and in the accumulation of the storage carbohydrates trehalose and glycogen. Thermal survival of the A. niger cells corresponded to a significant increase in the levels of the antioxidant enzymes superoxide dismutase and catalase for all variants. These observations suggest that heat and oxidative stress have a common cellular effect.


2021 ◽  
Author(s):  
Akio Nakamura ◽  
Ritsuko Kawahrada

Protein glycation is the random, nonenzymatic reaction of sugar and protein induced by diabetes and ageing; this process is quite different from glycosylation mediated by the enzymatic reactions catalysed by glycosyltransferases. Schiff bases form advanced glycation end products (AGEs) via intermediates, such as Amadori compounds. Although these AGEs form various molecular species, only a few of their structures have been determined. AGEs bind to different AGE receptors on the cell membrane and transmit signals to the cell. Signal transduction via the receptor of AGEs produces reactive oxygen species in cells, and oxidative stress is responsible for the onset of diabetic complications. This chapter introduces the molecular mechanisms of disease onset due to oxidative stress, including reactive oxygen species, caused by AGEs generated by protein glycation in a hyperglycaemic environment.


2020 ◽  
Vol 7 (3) ◽  
pp. 782-792 ◽  
Author(s):  
Hongye Yao ◽  
Yang Huang ◽  
Xuan Li ◽  
Xuehua Li ◽  
Hongbin Xie ◽  
...  

Graphene can be modified by different functional groups through various transformation processes in the environment.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 567 ◽  
Author(s):  
Fernando J. Peña ◽  
Cristian O’Flaherty ◽  
José M. Ortiz Rodríguez ◽  
Francisco E. Martín Cano ◽  
Gemma L. Gaitskell-Phillips ◽  
...  

Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.


2019 ◽  
Vol 201 (22) ◽  
Author(s):  
Laura Barrientos-Moreno ◽  
María Antonia Molina-Henares ◽  
Marta Pastor-García ◽  
María Isabel Ramos-González ◽  
Manuel Espinosa-Urgel

ABSTRACT Iron is essential for most life forms. Under iron-limiting conditions, many bacteria produce and release siderophores—molecules with high affinity for iron—which are then transported into the cell in their iron-bound form, allowing incorporation of the metal into a wide range of cellular processes. However, free iron can also be a source of reactive oxygen species that cause DNA, protein, and lipid damage. Not surprisingly, iron capture is finely regulated and linked to oxidative-stress responses. Here, we provide evidence indicating that in the plant-beneficial bacterium Pseudomonas putida KT2440, the amino acid l-arginine is a metabolic connector between iron capture and oxidative stress. Mutants defective in arginine biosynthesis show reduced production and release of the siderophore pyoverdine and altered expression of certain pyoverdine-related genes, resulting in higher sensitivity to iron limitation. Although the amino acid is not part of the siderophore side chain, addition of exogenous l-arginine restores pyoverdine release in the mutants, and increased pyoverdine production is observed in the presence of polyamines (agmatine and spermidine), of which arginine is a precursor. Spermidine also has a protective role against hydrogen peroxide in P. putida, whereas defects in arginine and pyoverdine synthesis result in increased production of reactive oxygen species. IMPORTANCE The results of this study show a previously unidentified connection between arginine metabolism, siderophore turnover, and oxidative stress in Pseudomonas putida. Although the precise molecular mechanisms involved have yet to be characterized in full detail, our data are consistent with a model in which arginine biosynthesis and the derived pathway leading to polyamine production function as a homeostasis mechanism that helps maintain the balance between iron uptake and oxidative-stress response systems.


Sign in / Sign up

Export Citation Format

Share Document