Evidence for Extreme Divergence of Open Field Lines from Solar Active Regions

1979 ◽  
Vol 3 (6) ◽  
pp. 375-379 ◽  
Author(s):  
G. A. Dulk ◽  
D. B. Melrose ◽  
S. Suzuki

In this paper we review the evidence on the structure of the open magnetic field lines that emerge from solar active regions into interplanetary space. The evidence comes mainly from the measured sizes, positions and polarization of Type III and Type V bursts, and from electron streams observed from space. We find that the observations are best interpreted in terms of a strongly-diverging field topology, with the open field lines filling a cone of angle ~60°.

1980 ◽  
Vol 91 ◽  
pp. 261-261
Author(s):  
K. V. Sheridan

A paper that has considerable relevance of the subject matter of this symposium is the following: “Evidence for Extreme Divergence of Open Field Lines from Solar Active Regions,” by G. A. Dulk (Division of Radiophysics, CSIRO, Sydney, Australia and Department of Astro-Geophysics, University of Colorado, Boulder, Colorado), D. B. Melrose (Department of Theoretical Physics, University of Sydney, Australia) and S. Suzuki (Division of Radiophysics, CSIRO, Sydney, Australia).


1980 ◽  
Vol 86 ◽  
pp. 315-322 ◽  
Author(s):  
S. Suzuki ◽  
G.A. Dulk ◽  
K. V. Sheridan

We report on the positional and polarization characteristics of Type III bursts in the range 24–220 MHz as measured by the Culgoora radioheliograph, spectrograph and spectropolarimeter. Our study includes 997 bursts which are of two classes: fundamental-harmonic (F-H) pairs and “structureless” bursts with no visible F-H structure. In a paper published elsewhere (Dulk and Suzuki, 1979) we give a detailed description and include observations of source sizes, heights and brightness temperatures. Here we concentrate on the polarization of the bursts and the variation of polarization from centre to limb. The observed centre-to-limb decrease in polarization approximately follows a cosine law. This decrease is not as predicted by simple theory but is consistent with other observations which imply that open field lines from an active region diverge strongly. The observed o-mode polarization of harmonic radiation implies that the wave vectors of Langmuir waves are always parallel, within about 20°, to the magnetic field, while the constancy of H polarization with frequency implies that the ratio fB/fP, the Alfvén speed vA and the plasma beta are constant with height on the open field lines above an active region. Finally, we infer that some factor, in addition to the magnetic field strength, controls the polarization of F radiation.


1974 ◽  
Vol 57 ◽  
pp. 235-238
Author(s):  
N. R. Labrum ◽  
R. A. Duncan

(Astrophys. Letters). The type V burst has been defined as a wideband continuum which sometimes appears for a minute or so following a type III burst (Wild et al., 1959b). It is now generally accepted that type III bursts arise from plasma waves set up by electrons escaping with velocity ~c/3 along open magnetic field lines (Wild et al., 1959a; Stewart, 1965); the most widely accepted explanation of type V continua is that they arise from plasma waves set up by electrons of similar velocity which have become trapped in a coronal magnetic loop (Weiss and Stewart, 1975). On this hypothesis the plasma waves are set up by two opposing electron streams in the trapping region, and from this consideration Zheleznyakov and Zaitsev (1968) have concluded that type V emission should be predominantly at the second harmonic of the local plasma frequency. In this paper we describe and discuss some two-dimensional observations of source positions of type III–V events which were obtained at 80 MHz on the Culgoora radioheliograph.


1980 ◽  
Vol 86 ◽  
pp. 363-368
Author(s):  
Monique G. Aubier

When studying the propagation of accelerated electrons outwards in the corona, we have shown that the perpendicular momentum of the electrons remaining after the type I process is transformed into parallel momentum during the propagation along the decreasing magnetic field, and that type III emission can occur when the parallel velocity component reaches a critical value. With this model we explain in particular the low frequency cut-off of type I emission, the characteristics of the type III bursts near their starting frequency and the transition between type III- and type I-like decameter emission observed in few cases.


2017 ◽  
Vol 54 (3) ◽  
pp. 58-67
Author(s):  
B. I. Ryabov ◽  
D. A. Bezrukov ◽  
J. Kallunki

AbstractThe microwave regions with low brightness temperature are found to overlap the regions of the depressed coronal emission and open field lines at the periphery of two solar active regions (ARs). The imaging microwave observations of the Sun with the Nobeyama Radio heliograph at 1.76 cm, the MRO-14 radio telescope of Metsähovi Radio Observatory at 0.8 cm, and the RT-32 of Ventspils International Radio Astronomy Centre in the range 3.2-4.7 cm are used. To reduce the noise in the intensity distribution of the RT-32 maps of the Sun, one wavelet plane of “à trous” wavelet space decomposition is subtracted from each map. To locate the open-field regions, the full-Sun coronal magnetic fields with the potential field source surface (PFSS) model for RSS= 1.8 Rʘare simulated. We conclude that the revealed LTRs present narrow coronal hole-like regions near two ARs and imply an extra investigation on the plasma outflow.


2008 ◽  
Vol 4 (S257) ◽  
pp. 283-286 ◽  
Author(s):  
N. Gopalswamy ◽  
S. Akiyama ◽  
S. Yashiro

AbstractWe examine the source properties of X-class soft X-ray flares that were not associated with coronal mass ejections (CMEs). All the flares were associated with intense microwave bursts implying the production of high energy electrons. However, most (85%) of the flares were not associated with metric type III bursts, even though open field lines existed in all but two of the active regions. The X-class flares seem to be truly confined because there was no material ejection (thermal or nonthermal) away from the flaring region into space.


2013 ◽  
Vol 31 (6) ◽  
pp. 1005-1010 ◽  
Author(s):  
R. Slapak ◽  
H. Nilsson ◽  
L. G. Westerberg

Abstract. Studies on terrestrial oxygen ion (O+) escape into the interplanetary space have considered a number of different escape paths. Recent observations however suggest a yet insufficiently investigated additional escape route for hot O+: along open magnetic field lines in the high altitude cusp and mantle. Here we present a statistical study on O+ flux in the high-latitude dayside magnetosheath. The O+ is generally seen relatively close to the magnetopause, consistent with observations of O+ flowing primarily tangentially to the magnetopause. We estimate the total escape flux in this region to be ~ 7 × 1024 s−1, implying this escape route to significantly contribute to the overall total O+ loss into interplanetary space.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Sign in / Sign up

Export Citation Format

Share Document