Long-term versus short-term memory deficits for faces in temporal lobe and generalized epilepsy patients

2010 ◽  
Vol 16 (3) ◽  
pp. 574-578 ◽  
Author(s):  
KIRSTEN HÖTTING ◽  
TALL KATZ-BILETZKY ◽  
THOMAS MALINA ◽  
MATTHIAS LINDENAU ◽  
THOMAS BENGNER

AbstractIt is still an open question whether short-term and long-term memory are two anatomically dissociable memory systems working in parallel or whether they are represented by neural circuits within similar cortical areas. Epilepsy may be used as a model to study these memory processes. We hypothesized that a double dissociation of short-term and long-term memory exists in temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE). Immediate and 24-hour face recognition was tested in 10 TLE patients, 9 IGE patients, and 10 healthy controls. TLE patients’ immediate recognition was unimpaired, but their memory scores were reduced as compared to healthy controls after 24 hours. In IGE patients, memory was already reduced during immediate recognition. These results are in line with the idea that short-term memory is a transient trace that requires consolidation supported by the medial temporal lobe to change into a more stable status of long-term memory. (JINS, 2010, 16, 574–578.)

2021 ◽  
Author(s):  
Vy A. Vo ◽  
David W. Sutterer ◽  
Joshua J. Foster ◽  
Thomas C. Sprague ◽  
Edward Awh ◽  
...  

AbstractCurrent theories propose that the short-term retention of information in working memory (WM) and the recall of information from long-term memory (LTM) are supported by overlapping neural mechanisms in occipital and parietal cortex. Both are thought to rely on reinstating patterns of sensory activity evoked by the perception of the remembered item. However, the extent of the shared representations between WM and LTM are unclear, and it is unknown how WM and LTM representations may differ across cortical regions. We designed a spatial memory task that allowed us to directly compare the representations of remembered spatial information in WM and LTM. Critically, we carefully matched the precision of behavioral responses in these tasks. We used fMRI and multivariate pattern analyses to examine representations in (1) retinotopic cortex and (2) lateral parietal cortex (LPC) regions previously implicated in LTM. We show that visual memories were represented in a sensory-like code in both tasks across retinotopic regions in occipital and parietal cortex. LPC regions also encoded remembered locations in both WM and LTM, but in a format that differed from the sensory-evoked activity. These results suggest a striking correspondence in the format of WM and LTM representations across occipital and parietal cortex. On the other hand, we show that activity patterns in nearly all parietal regions, but not occipital regions, contained information that could discriminate between WM trials and LTM trials. Our data provide new evidence for theories of memory systems and the representation of mnemonic content.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


2020 ◽  
Vol 29 (4) ◽  
pp. 710-727
Author(s):  
Beula M. Magimairaj ◽  
Naveen K. Nagaraj ◽  
Alexander V. Sergeev ◽  
Natalie J. Benafield

Objectives School-age children with and without parent-reported listening difficulties (LiD) were compared on auditory processing, language, memory, and attention abilities. The objective was to extend what is known so far in the literature about children with LiD by using multiple measures and selective novel measures across the above areas. Design Twenty-six children who were reported by their parents as having LiD and 26 age-matched typically developing children completed clinical tests of auditory processing and multiple measures of language, attention, and memory. All children had normal-range pure-tone hearing thresholds bilaterally. Group differences were examined. Results In addition to significantly poorer speech-perception-in-noise scores, children with LiD had reduced speed and accuracy of word retrieval from long-term memory, poorer short-term memory, sentence recall, and inferencing ability. Statistically significant group differences were of moderate effect size; however, standard test scores of children with LiD were not clinically poor. No statistically significant group differences were observed in attention, working memory capacity, vocabulary, and nonverbal IQ. Conclusions Mild signal-to-noise ratio loss, as reflected by the group mean of children with LiD, supported the children's functional listening problems. In addition, children's relative weakness in select areas of language performance, short-term memory, and long-term memory lexical retrieval speed and accuracy added to previous research on evidence-based areas that need to be evaluated in children with LiD who almost always have heterogenous profiles. Importantly, the functional difficulties faced by children with LiD in relation to their test results indicated, to some extent, that commonly used assessments may not be adequately capturing the children's listening challenges. Supplemental Material https://doi.org/10.23641/asha.12808607


1978 ◽  
Vol 10 (2) ◽  
pp. 141-148
Author(s):  
Mary Anne Herndon

In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. This recombination process can be used to relieve the limited storage capacity constraint of short term memory and subsequently increase processing efficiency. The results of the simulation give a favorable indication of the success for the use of cluster analysis as a tool to simulate the encoding function in the detection of semantically similar paragraphs.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Ning An ◽  
Shi-Ying Sun ◽  
Xiao-Guang Zhao ◽  
Zeng-Guang Hou

Visual tracking is a challenging computer vision task due to the significant observation changes of the target. By contrast, the tracking task is relatively easy for humans. In this article, we propose a tracker inspired by the cognitive psychological memory mechanism, which decomposes the tracking task into sensory memory register, short-term memory tracker, and long-term memory tracker like humans. The sensory memory register captures information with three-dimensional perception; the short-term memory tracker builds the highly plastic observation model via memory rehearsal; the long-term memory tracker builds the highly stable observation model via memory encoding and retrieval. With the cooperative models, the tracker can easily handle various tracking scenarios. In addition, an appearance-shape learning method is proposed to update the two-dimensional appearance model and three-dimensional shape model appropriately. Extensive experimental results on a large-scale benchmark data set demonstrate that the proposed method outperforms the state-of-the-art two-dimensional and three-dimensional trackers in terms of efficiency, accuracy, and robustness.


2013 ◽  
Vol 25 (7) ◽  
pp. 1111-1121 ◽  
Author(s):  
Kristjan Kalm ◽  
Matthew H. Davis ◽  
Dennis Norris

Much of what we need to remember consists of sequences of stimuli, experiences, or events. Repeated presentation of a specific sequence establishes a more stable long-term memory, as shown by increased recall accuracy over successive trials of an STM task. Here we used fMRI to study the neural mechanisms that underlie sequence learning in the auditory–verbal domain. Specifically, we track the emergence of neural representations of sequences over the course of learning using multivariate pattern analysis. For this purpose, we use a serial recall task, in which participants have to recall overlapping sequences of letter names, with some of those sequences being repeated and hence learned over the course of the experiment. We show that voxels in the hippocampus come to encode the identity of specific repeated sequences although the letter names were common to all sequences in the experiment. These changes could have not been caused by changes in overall level of activity or to fMRI signal-to-noise ratios. Hence, the present results go beyond conventional univariate fMRI methods in showing a critical contribution of medial-temporal lobe memory systems to establishing long-term representations of verbal sequences.


2005 ◽  
Vol 85 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Jill C Heathcock ◽  
Anjana N Bhat ◽  
Michele A Lobo ◽  
James (Cole) Galloway

Abstract Background and Purpose. Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Subjects. Ten infants born full-term and 10 infants born preterm (<33 weeks gestational age, <2,500 g) and 10 comparison infants participated in the study. Methods. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Results. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Discussion and Conclusion. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.


1974 ◽  
Vol 38 (2) ◽  
pp. 495-501
Author(s):  
Gilbert B. Tunnell ◽  
Philippe R. Falkenberg

Manipulation of the context in a short-term memory paradigm produces changes in the ability to recognize the same material from long-term memory 24 hr. later. If immediate recall is accurate, later recognition is improved if this recall is conducted with the same context as occurred at learning. If immediate recall is completely inaccurate, later recognition is improved if this recall is conducted with different context than was present at learning. Short-term recall did not need to be accurate to transfer the learned nonsense trigrams to long-term memory. Manipulation of context 24 hr. after learning had no effect on recognition. Results are discussed in terms of the Waugh and Norman memory model, Tulving's encoding specificity hypothesis, and interference theory.


Author(s):  
Robert J. Biersner

Twenty-one U.S. Navy divers were given several standard visual tests, the Purdue Peg-board, the Bennett Hand Tool Dexterity Test, and the Wechsler Memory Scale while breathing air or 30% nitrous oxide. The results showed that visual function, fine and gross motor performance, and long-term memory were normal under nitrous oxide, while learning and short-term memory were significantly impaired. The subjective effects of breathing nitrous oxide were similar to those experienced during compressed air narcosis. The selective impairment of short-term memory suggests that divers might be able to perform useful work at depths deeper than those currently authorized, provided the tasks were well learned and practiced.


Sign in / Sign up

Export Citation Format

Share Document