scholarly journals Negative parental emotional environment increases the association between childhood behavioral problems and impaired recognition of negative facial expressions

2021 ◽  
pp. 1-10
Author(s):  
Daniel T. Burley ◽  
Christopher W. Hobson ◽  
Dolapo Adegboye ◽  
Katherine H. Shelton ◽  
Stephanie H.M. van Goozen

Abstract Impaired facial emotion recognition is a transdiagnostic risk factor for a range of psychiatric disorders. Childhood behavioral difficulties and parental emotional environment have been independently associated with impaired emotion recognition; however, no study has examined the contribution of these factors in conjunction. We measured recognition of negative (sad, fear, anger), neutral, and happy facial expressions in 135 children aged 5–7 years referred by their teachers for behavioral problems. Parental emotional environment was assessed for parental expressed emotion (EE) – characterized by negative comments, reduced positive comments, low warmth, and negativity towards their child – using the 5-minute speech sample. Child behavioral problems were measured using the teacher-informant Strengths and Difficulties Questionnaire (SDQ). Child behavioral problems and parental EE were independently associated with impaired recognition of negative facial expressions specifically. An interactive effect revealed that the combination of both factors was associated with the greatest risk for impaired recognition of negative faces, and in particular sad facial expressions. No relationships emerged for the identification of happy facial expressions. This study furthers our understanding of multidimensional processes associated with the development of facial emotion recognition and supports the importance of early interventions that target this domain.

2017 ◽  
Vol 29 (5) ◽  
pp. 1749-1761 ◽  
Author(s):  
Johanna Bick ◽  
Rhiannon Luyster ◽  
Nathan A. Fox ◽  
Charles H. Zeanah ◽  
Charles A. Nelson

AbstractWe examined facial emotion recognition in 12-year-olds in a longitudinally followed sample of children with and without exposure to early life psychosocial deprivation (institutional care). Half of the institutionally reared children were randomized into foster care homes during the first years of life. Facial emotion recognition was examined in a behavioral task using morphed images. This same task had been administered when children were 8 years old. Neutral facial expressions were morphed with happy, sad, angry, and fearful emotional facial expressions, and children were asked to identify the emotion of each face, which varied in intensity. Consistent with our previous report, we show that some areas of emotion processing, involving the recognition of happy and fearful faces, are affected by early deprivation, whereas other areas, involving the recognition of sad and angry faces, appear to be unaffected. We also show that early intervention can have a lasting positive impact, normalizing developmental trajectories of processing negative emotions (fear) into the late childhood/preadolescent period.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paula J. Webster ◽  
Shuo Wang ◽  
Xin Li

Different styles of social interaction are one of the core characteristics of autism spectrum disorder (ASD). Social differences among individuals with ASD often include difficulty in discerning the emotions of neurotypical people based on their facial expressions. This review first covers the rich body of literature studying differences in facial emotion recognition (FER) in those with ASD, including behavioral studies and neurological findings. In particular, we highlight subtle emotion recognition and various factors related to inconsistent findings in behavioral studies of FER in ASD. Then, we discuss the dual problem of FER – namely facial emotion expression (FEE) or the production of facial expressions of emotion. Despite being less studied, social interaction involves both the ability to recognize emotions and to produce appropriate facial expressions. How others perceive facial expressions of emotion in those with ASD has remained an under-researched area. Finally, we propose a method for teaching FER [FER teaching hierarchy (FERTH)] based on recent research investigating FER in ASD, considering the use of posed vs. genuine emotions and static vs. dynamic stimuli. We also propose two possible teaching approaches: (1) a standard method of teaching progressively from simple drawings and cartoon characters to more complex audio-visual video clips of genuine human expressions of emotion with context clues or (2) teaching in a field of images that includes posed and genuine emotions to improve generalizability before progressing to more complex audio-visual stimuli. Lastly, we advocate for autism interventionists to use FER stimuli developed primarily for research purposes to facilitate the incorporation of well-controlled stimuli to teach FER and bridge the gap between intervention and research in this area.


Informatics ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 6 ◽  
Author(s):  
Abdulrahman Alreshidi ◽  
Mohib Ullah

Facial emotion recognition is a crucial task for human-computer interaction, autonomous vehicles, and a multitude of multimedia applications. In this paper, we propose a modular framework for human facial emotions’ recognition. The framework consists of two machine learning algorithms (for detection and classification) that could be trained offline for real-time applications. Initially, we detect faces in the images by exploring the AdaBoost cascade classifiers. We then extract neighborhood difference features (NDF), which represent the features of a face based on localized appearance information. The NDF models different patterns based on the relationships between neighboring regions themselves instead of considering only intensity information. The study is focused on the seven most important facial expressions that are extensively used in day-to-day life. However, due to the modular design of the framework, it can be extended to classify N number of facial expressions. For facial expression classification, we train a random forest classifier with a latent emotional state that takes care of the mis-/false detection. Additionally, the proposed method is independent of gender and facial skin color for emotion recognition. Moreover, due to the intrinsic design of NDF, the proposed method is illumination and orientation invariant. We evaluate our method on different benchmark datasets and compare it with five reference methods. In terms of accuracy, the proposed method gives 13% and 24% better results than the reference methods on the static facial expressions in the wild (SFEW) and real-world affective faces (RAF) datasets, respectively.


2019 ◽  
Vol 29 (10) ◽  
pp. 1441-1451 ◽  
Author(s):  
Melina Nicole Kyranides ◽  
Kostas A. Fanti ◽  
Maria Petridou ◽  
Eva R. Kimonis

AbstractIndividuals with callous-unemotional (CU) traits show deficits in facial emotion recognition. According to preliminary research, this impairment may be due to attentional neglect to peoples’ eyes when evaluating emotionally expressive faces. However, it is unknown whether this atypical processing pattern is unique to established variants of CU traits or modifiable with intervention. This study examined facial affect recognition and gaze patterns among individuals (N = 80; M age = 19.95, SD = 1.01 years; 50% female) with primary vs secondary CU variants. These groups were identified based on repeated measurements of conduct problems, CU traits, and anxiety assessed in adolescence and adulthood. Accuracy and number of fixations on areas of interest (forehead, eyes, and mouth) while viewing six dynamic emotions were assessed. A visual probe was used to direct attention to various parts of the face. Individuals with primary and secondary CU traits were less accurate than controls in recognizing facial expressions across all emotions. Those identified in the low-anxious primary-CU group showed reduced overall fixations to fearful and painful facial expressions compared to those in the high-anxious secondary-CU group. This difference was not specific to a region of the face (i.e. eyes or mouth). Findings point to the importance of investigating both accuracy and eye gaze fixations, since individuals in the primary and secondary groups were only differentiated in the way they attended to specific facial expression. These findings have implications for differentiated interventions focused on improving facial emotion recognition with regard to attending and correctly identifying emotions.


2014 ◽  
Vol 26 (4) ◽  
pp. 253-259 ◽  
Author(s):  
Linette Lawlor-Savage ◽  
Scott R. Sponheim ◽  
Vina M. Goghari

BackgroundThe ability to accurately judge facial expressions is important in social interactions. Individuals with bipolar disorder have been found to be impaired in emotion recognition; however, the specifics of the impairment are unclear. This study investigated whether facial emotion recognition difficulties in bipolar disorder reflect general cognitive, or emotion-specific, impairments. Impairment in the recognition of particular emotions and the role of processing speed in facial emotion recognition were also investigated.MethodsClinically stable bipolar patients (n = 17) and healthy controls (n = 50) judged five facial expressions in two presentation types, time-limited and self-paced. An age recognition condition was used as an experimental control.ResultsBipolar patients’ overall facial recognition ability was unimpaired. However, patients’ specific ability to judge happy expressions under time constraints was impaired.ConclusionsFindings suggest a deficit in happy emotion recognition impacted by processing speed. Given the limited sample size, further investigation with a larger patient sample is warranted.


2013 ◽  
Vol 16 ◽  
Author(s):  
Esther Lázaro ◽  
Imanol Amayra ◽  
Juan Francisco López-Paz ◽  
Amaia Jometón ◽  
Natalia Martín ◽  
...  

AbstractThe assessment of facial expression is an important aspect of a clinical neurological examination, both as an indicator of a mood disorder and as a sign of neurological damage. To date, although studies have been conducted on certain psychosocial aspects of myasthenia, such as quality of life and anxiety, and on neuropsychological aspects such as memory, no studies have directly assessed facial emotion recognition accuracy. The aim of this study was to assess the facial emotion recognition accuracy (fear, surprise, sadness, happiness, anger, and disgust), empathy, and reaction time of patients with myasthenia. Thirty-five patients with myasthenia and 36 healthy controls were tested for their ability to differentiate emotional facial expressions. Participants were matched with respect to age, gender, and education level. Their ability to differentiate emotional facial expressions was evaluated using the computer-based program Feel Test. The data showed that myasthenic patients scored significantly lower (p < 0.05) than healthy controls in the total Feel score, fear, surprise, and higher reaction time. The findings suggest that the ability to recognize facial affect may be reduced in individuals with myasthenia.


2020 ◽  
Author(s):  
Nazire Duran ◽  
ANTHONY P. ATKINSON

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow lead to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 3) and when briefly presented at the mouth (Experiment 2). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260814
Author(s):  
Nazire Duran ◽  
Anthony P. Atkinson

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow led to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 2b) and when briefly presented at the mouth (Experiment 2a). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


2018 ◽  
Vol 8 (12) ◽  
pp. 219 ◽  
Author(s):  
Mayra Gutiérrez-Muñoz ◽  
Martha Fajardo-Araujo ◽  
Erika González-Pérez ◽  
Victor Aguirre-Arzola ◽  
Silvia Solís-Ortiz

Polymorphisms of the estrogen receptor ESR1 and ESR2 genes have been linked with cognitive deficits and affective disorders. The effects of these genetic variants on emotional processing in females with low estrogen levels are not well known. The aim was to explore the impact of the ESR1 and ESR2 genes on the responses to the facial emotion recognition task in females. Postmenopausal healthy female volunteers were genotyped for the polymorphisms Xbal and PvuII of ESR1 and the polymorphism rs1256030 of ESR2. The effect of these polymorphisms on the response to the facial emotion recognition of the emotions happiness, sadness, disgust, anger, surprise, and fear was analyzed. Females carrying the P allele of the PvuII polymorphism or the X allele of the Xbal polymorphism of ESR1 easily recognized facial expressions of sadness that were more difficult for the women carrying the p allele or the x allele. They displayed higher accuracy, fast response time, more correct responses, and fewer omissions to complete the task, with a large effect size. Women carrying the ESR2 C allele of ESR2 showed a faster response time for recognizing facial expressions of anger. These findings link ESR1 and ESR2 polymorphisms in facial emotion recognition of negative emotions.


2021 ◽  
Vol 39 (1B) ◽  
pp. 89-100
Author(s):  
Suhaila N. Mohammed ◽  
Alia K. Abdul Hassan

Key-frame selection plays an important role in facial expression recognition systems. It helps in selecting the most representative frames that capture the different poses of the face. The effect of the number of selected keyframes has been studied in this paper to find its impact on the final accuracy of the emotion recognition system.  Dynamic and static information is employed to select the most effective key-frames of the facial video with a short response time. Firstly, the absolute difference between the successive frames is used to reduce the number of frames and select the candidate ones which then contribute to the clustering process. The static-based information of the reduced sets of frames is then given to the fuzzy C-Means algorithm to select the best C-frames. The selected keyframes are then fed to a graph mining-based facial emotion recognition system to select the most effective sub-graphs in the given set of keyframes. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the results show that the proposed method can effectively capture the keyframes that give the best accuracy with a mean response time equals to 2.89s.


Sign in / Sign up

Export Citation Format

Share Document