Involvement of the Left Supramarginal Gyrus in Manipulation Judgment Tasks: Contributions to Theories of Tool Use

2017 ◽  
Vol 23 (8) ◽  
pp. 685-691 ◽  
Author(s):  
Mathieu Lesourd ◽  
François Osiurak ◽  
Jordan Navarro ◽  
Emanuelle Reynaud

AbstractObjectives: Two theories of tool use, namely the gesture engram and the technical reasoning theories, make distinct predictions about the involvement of the left inferior parietal lobe (IPL) in manipulation judgement tasks. The objective here is to test these alternative predictions based on previous studies on manipulation judgment tasks using transcranial magnetic stimulations (TMS) targeting the left supramarginal gyrus (SMG). Methods: We review recent TMS studies on manipulation judgement tasks and confront these data with predictions made by both tool use theories. Results: The left SMG is a highly intertwined region, organized following several functionally distinct areas and TMS may have disrupted a cortical network involved in the ability to use tools rather than only one functional area supporting manipulation knowledge. Moreover, manipulation judgement tasks may be impaired following virtual lesions outside the IPL. Conclusions: These data are more in line with the technical reasoning hypothesis, which assumes that the left IPL does not store manipulation knowledge per se. (JINS, 2017, 23, 685–691)

2021 ◽  
Author(s):  
François Osiurak ◽  
Caroline Crétel ◽  
Natalie Uomini ◽  
Chloé Bryche ◽  
Mathieu Lesourd ◽  
...  

Understanding the link between brain evolution and the evolution of distinctive features of modern human cognition is a fundamental challenge. A still unresolved question concerns the co-evolution of tool behavior (i.e., tool use or tool making) and language. The shared neurocognitive processes hypothesis suggests that the emergence of the combinatorial component of language skills within the frontal lobe/Broca’s area made possible the complexification of tool-making skills. The importance of frontal lobe/Broca’s area in tool behavior is somewhat surprising with regard to the literature on neuropsychology and cognitive neuroscience, which has instead stressed the critical role of the left inferior parietal lobe. Therefore, to be complete, any version of the shared neurocognitive processes hypothesis needs to integrate the potential interactions between the frontal lobe/Broca’s area and the left inferior parietal lobe as well as their co-evolution at a phylogenetic level. Here we sought to provide first elements of answer through the use of the massive deployment framework, which posits that evolutionarily older brain areas are deployed in more cognitive functions (i.e., they are less specific). We focused on the left parietal cortex, and particularly the left areas PF, PGI, and AIP, which are known to be involved in tool use, language, and motor control, respectively. The deployment of each brain area in different cognitive functions was measured by conducting a meta-analysis of neuroimaging studies. Our results confirmed the pattern of specificity for each brain area and also showed that the left area PGI was far less specific than the left areas PF and AIP. From these findings, we discuss the different evolutionary scenarios depicting the potential co-evolution of the combinatorial and generative components of language and tool behavior in our lineage.


2012 ◽  
Vol 136 (1-3) ◽  
pp. 43-50 ◽  
Author(s):  
John F. Smiley ◽  
Kira Konnova ◽  
Cynthia Bleiwas

Psychology ◽  
2018 ◽  
Vol 09 (15) ◽  
pp. 2996-3006
Author(s):  
Mohamad Arif Fahmi Bin Ismail ◽  
Sotaro Shimada

Cortex ◽  
2017 ◽  
Vol 94 ◽  
pp. 176-181 ◽  
Author(s):  
Jorge Almeida ◽  
Ana R. Martins ◽  
Fredrik Bergström ◽  
Lénia Amaral ◽  
Andreia Freixo ◽  
...  

1991 ◽  
Vol 3 (1) ◽  
pp. 9-24 ◽  
Author(s):  
M. H. Harries ◽  
D. I. Perrett

Physiological recordings along the length of the upper bank of the superior temporal sulcus (STS) revealed cells each of which was selectively responsive to a particular view of the head and body. Such cells were grouped in large patches 3-4 mm across. The patches were separated by regions of cortex containing cells responsive to other stimuli. The distribution of cells projecting from temporal cortex to the posterior regions of the inferior parietal lobe was studied with retrogradely transported fluorescent dyes. A strong temporoparietal projection was found originating from the upper bank of the STS. Cells projecting to the parietal cortex occurred in large patches or bands. The size and periodicity of modules defined through anatomical connections matched the functional subdivisions of the STS cortex involved in face processing evident in physiological recordings. It is speculated that the temporoparietal projections could provide a route through which temporal lobe analysis of facial signals about the direction of others' attention can be passed to parietal systems concerned with spatial awareness.


2020 ◽  
Vol 10 (7) ◽  
pp. 459 ◽  
Author(s):  
Gaoxia Wei ◽  
Ruoguang Si ◽  
Youfa Li ◽  
Ying Yao ◽  
Lizhen Chen ◽  
...  

Volition is described as a psychological construct with great emphasis on the sense of agency. During volitional behavior, an individual always presents a volitional quality, an intrapersonal trait for dealing with adverse circumstances, which determines the individual’s persistence of action toward their intentions or goals. Elite athletes are a group of experts with superior volitional quality and, thereby, could be regarded as the natural subject pool to investigate this mental trait. The purpose of this study was to examine brain morphometric characteristics associated with volitional quality by using magnetic resonance imaging (MRI) and the Scale of Volitional Quality. We recruited 16 national-level athletes engaged in short track speed skating and 18 healthy controls matched with age and gender. A comparison of a parcel-wise brain anatomical characteristics of the healthy controls with those of the elite athletes revealed three regions with significantly increased cortical thickness in the athlete group. These regions included the left precuneus, the left inferior parietal lobe, and the right superior frontal lobe, which are the core brain regions involved in the sense of agency. The mean cortical thickness of the left inferior parietal lobe was significantly correlated with the independence of volitional quality (a mental trait that characterizes one’s intendency to control his/her own behavior and make decisions by applying internal standards and/or objective criteria). These findings suggest that sports training is an ideal model for better understanding the neural mechanisms of volitional behavior in the human brain.


2020 ◽  
Vol 32 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Manuel P. Klaus ◽  
Gerda C. Wyssen ◽  
Sebastian M. Frank ◽  
Wilhelm M. Malloni ◽  
Mark W. Greenlee ◽  
...  

There is growing evidence that vestibular information is not only involved in reflexive eye movements and the control of posture but it also plays an important role in higher order cognitive processes. Previous behavioral research has shown that concomitant vestibular stimuli influence performance in tasks that involve imagined self-rotations. These results suggest that imagined and perceived body rotations share common mechanisms. However, the nature and specificity of these effects remain largely unknown. Here, we investigated the neural mechanisms underlying this vestibulocognitive interaction. Participants ( n = 20) solved an imagined self-rotation task during caloric vestibular stimulation. We found robust main effects of caloric vestibular stimulation in the core region of the vestibular network, including the rolandic operculum and insula bilaterally, and of the cognitive task in parietal and frontal regions. Interestingly, we found an interaction of stimulation and task in the left inferior parietal lobe, suggesting that this region represents the modulation of imagined body rotations by vestibular input. This result provides evidence that the inferior parietal lobe plays a crucial role in the neural integration of mental and physical body rotation.


Cortex ◽  
2016 ◽  
Vol 82 ◽  
pp. 119-132 ◽  
Author(s):  
Josselin Baumard ◽  
Mathieu Lesourd ◽  
Christophe Jarry ◽  
Catherine Merck ◽  
Frédérique Etcharry-Bouyx ◽  
...  

2006 ◽  
Vol 27 (4) ◽  
pp. 340-349 ◽  
Author(s):  
Andrea Federspiel ◽  
Umberto Volpe ◽  
Helge Horn ◽  
Thomas Dierks ◽  
Anders Franck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document