Applications of STEM to Problems in Materials Science

Author(s):  
John B. Vander Sande ◽  
Anthony J. Garratt-Reed

The scanning transmission electron microscope (STEM) concept developed gradually as attempts were made to combine the advantages and eliminate the disadvantages of the transmission electron microscope, the scanning electron microscope, and the electron microprobe. However, the marketing of the first commercial dedicated STEM (the VG Microscopes HB5) spurred the development of the instrumentation and the understanding of the data interpretation required for full utilization of the technique. Today, while some avenues remain incompletely developed, the STEM is accepted as a powerful research tool, and the prospect of being able to study the products of the interaction of a very fine electron beam with a specimen has provoked workers to perform imaginative and informative experiments. Below are presented a few recent samples of the applications of such a STEM, in the authors’ laboratory, to problems in the field of materials science.

Author(s):  
Oliver C. Wells ◽  
P.C. Cheng

In this discussion the words “high resolution imaging” of a solid sample in the scanning electron microscope (SEM) mean that details can be resolved that are considerably smaller than the penetration depth of the incident electron beam (EB) into the specimen. “Atomic resolution” in either the transmission electron microscope (TEM) or scanning transmission electron microscope (STEM) means that columns of atoms are resolved.Image contrasts in the backscattered electron (BSE) image are strongly affected by the specimen tilt and by the position and energy sensitivity of the BSE detector. The expression “BSE image” generally implies that the specimen is normal to the beam and the detector is above it. This shows compositional variations in the specimen with a spatial resolution limited by the spreading of the EB during the initial stages of penetration. This is similar in basic principle to the Z-Contrast method in the STEM that shows atomic resolution from a thinned single crystal mounted in the magnetic field of the focusing lens.


Author(s):  
J. R. Fields

The energy analysis of electrons scattered by a specimen in a scanning transmission electron microscope can improve contrast as well as aid in chemical identification. In so far as energy analysis is useful, one would like to be able to design a spectrometer which is tailored to his particular needs. In our own case, we require a spectrometer which will accept a parallel incident beam and which will focus the electrons in both the median and perpendicular planes. In addition, since we intend to follow the spectrometer by a detector array rather than a single energy selecting slit, we need as great a dispersion as possible. Therefore, we would like to follow our spectrometer by a magnifying lens. Consequently, the line along which electrons of varying energy are dispersed must be normal to the direction of the central ray at the spectrometer exit.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
W. T. Pike

With the advent of crystal growth techniques which enable device structure control at the atomic level has arrived a need to determine the crystal structure at a commensurate scale. In particular, in epitaxial lattice mismatched multilayers, it is of prime importance to know the lattice parameter, and hence strain, in individual layers in order to explain the novel electronic behavior of such structures. In this work higher order Laue zone (holz) lines in the convergent beam microdiffraction patterns from a thermal emission transmission electron microscope (TEM) have been used to measure lattice parameters to an accuracy of a few parts in a thousand from nanometer areas of material.Although the use of CBM to measure strain using a dedicated field emission scanning transmission electron microscope has already been demonstrated, the recording of the diffraction pattern at the required resolution involves specialized instrumentation. In this work, a Topcon 002B TEM with a thermal emission source with condenser-objective (CO) electron optics is used.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1134-1135
Author(s):  
K. Kaji ◽  
T. Aoyama ◽  
S. Taya ◽  
S. Isakozawa

The ability to obtain elemental maps processed by using inelastically scattered electrons in a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) is extremely useful in the analysis of materials, and semiconductor devices such as ULSI’s and GMR heads. Electron energy loss spectra (EELS) also give useful information not only to identify unknown materials but also to study chemical bonding states of the objective atoms. Hitachi developed an elemental mapping system, consisting of a STEM (Hitachi, HD- 2000) equipped with a two-window energy filter (Hitachi, ELV-2000), and performed realtime conventional jump-ratio images with nanometer resolution by in-situ calculation of energy-filtered signals [1]. Additional function of acquiring EELS along any lines on specimen has been developed in this system to investigate the energy loss near edge structure (ELNES).Figure 1 shows a schematic figure of the two-window energy filter, consisting of two quadrupole lenses for focusing and zooming spectra, respectively, a magnetic prism spectrometer, a deflection coil and two kinds of electron beam detectors.


2009 ◽  
Vol 15 (S2) ◽  
pp. 642-643
Author(s):  
M Bolorizadeh ◽  
HF Hess

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Sign in / Sign up

Export Citation Format

Share Document