Earliest Steps in Primary Tumor Formation and Micrometastasis Resolved with Histochemical Marker Gene-Tagged Tumor Cells

1997 ◽  
Vol 3 (S2) ◽  
pp. 31-32
Author(s):  
L. A. Culp ◽  
W.-c. Lin ◽  
N. Kleinman ◽  
K. O'Connor ◽  
R. Lechner

To facilitate detection of tumor cells at the highest resolution in an athymic nude mouse model system, Balb/c 3T3 cells transformed with the Harvey ras oncogene were transfected with the histochemical marker gene, bacterial lacZ (LZEJ cells). Alternatively, 3T3 cells transformed with the human sis oncogene were transfected with human placental alkaline phosphatase marker gene (APSI cells). Within minutes of subcutaneous injection, these tumor cells could be detected histochemically and the fate of cells followed with time. APSI or LZEJ cells gave very different single-cell morphologies at this site but yielded similar aggregation patterns of cells. Clearance of some cells could readily be detected by diffusion of histochemical product as “curly-haired” organizations of cells condensed into ovoid collections. Expansion of the population occurred with division of many cells in the population, not just one or a few cells. Cell number was quantitated by the development of ultrasensitive luminometry assays for the two histochemical marker enzymes; different kinetics were observed for establishment of LZEJ or APSI cells.

1998 ◽  
Vol 46 (5) ◽  
pp. 557-567 ◽  
Author(s):  
L. A. Culp ◽  
W.-c. Lin ◽  
N. R. Kleinman ◽  
K. L. O'Connor ◽  
R. Lechner

To facilitate detection of tumor cells at the highest resolution in any organ in athymic nude mouse model systems, a histochemical marker gene [bacterial IacZ or human placental alkaline phosphatase (ALP)] was transfected into specified transformed/tumor cells (fibrosarcoma or neuroblastoma). The fates of tumor cells were followed qualitatively and quantitatively by histochemical staining of whole organs or organ sections. Primary tumors developed initially via formation of “curly-haired” complexes of cells in the subcutis or dermis, followed by division of a large fraction of cells. When two tumor classes were mixed before injection, outgrowth occurred in regional concentrations of the primary tumor. Blood microvessels were detectable within 72 hr of injection, growing into tumor regions. IV injection routinely yielded multicellular foci in the lungs within minutes as precursors of experimental metastases. Micrometastasis was further resolved with cells “inactivated” by different treatments and by co-injection of two different tagged cell types. These approaches using different histochemical marker genes to “tag” different tumor cell classes, along with more advanced molecular biological approaches, permit us to characterize gene expression and its reversibility during the earliest stages of primary tumor formation and micrometastasis to virtually any organ in the recipient animal.


1983 ◽  
Vol 3 (6) ◽  
pp. 1138-1145 ◽  
Author(s):  
R Seif ◽  
I Seif ◽  
J Wantyghem

Rat 3T3 cells transformed by simian virus 40 were injected into rats to examine their capacity to develop into tumors. Both large T-dependent (N) transformants and large T-independent (A) transformants were used. All the transformed cell lines contained large T and small t and could multiply efficiently in agar. Only some transformants could develop into tumors. All tumor cells examined had lost both large T and small t. Tumor cells in which the viral genome could still be detected were found together with tumor cells in which the simian virus 40 DNA could no longer be detected. N transformants which displayed the transformed phenotype in a temperature-sensitive manner became temperature insensitive during tumor formation.


1983 ◽  
Vol 3 (6) ◽  
pp. 1138-1145
Author(s):  
R Seif ◽  
I Seif ◽  
J Wantyghem

Rat 3T3 cells transformed by simian virus 40 were injected into rats to examine their capacity to develop into tumors. Both large T-dependent (N) transformants and large T-independent (A) transformants were used. All the transformed cell lines contained large T and small t and could multiply efficiently in agar. Only some transformants could develop into tumors. All tumor cells examined had lost both large T and small t. Tumor cells in which the viral genome could still be detected were found together with tumor cells in which the simian virus 40 DNA could no longer be detected. N transformants which displayed the transformed phenotype in a temperature-sensitive manner became temperature insensitive during tumor formation.


1990 ◽  
Vol 172 (4) ◽  
pp. 1217-1224 ◽  
Author(s):  
B Gansbacher ◽  
K Zier ◽  
B Daniels ◽  
K Cronin ◽  
R Bannerji ◽  
...  

To study the effects of localized secretion of cytokines on tumor progression, the gene for human interleukin 2 (IL-2) was introduced via retroviral vectors into CMS-5 cells, a weakly immunogenic mouse fibrosarcoma cell line of BALB/c origin. Secretion of low levels of IL-2 from the tumor cells abrogated their tumorigenicity and induced a long-lasting protective immune response against a challenge with a tumorigenic dose of parental CMS-5 cells. Co-injection of IL-2-producing CMS-5 cells with unmodified tumor cells inhibited tumor formation even when highly tumorigenic doses of CMS-5 cells were used. Cytolytic activity in mice injected with parental CMS-5 cells was transient and was greatly diminished 3 wk after injection, as commonly observed in tumor-bearing animals. However, in mice injected with IL-2-producing cells, tumor-specific cytolytic activity persisted at high levels for the duration of the observation period (at least 75 d). High levels of tumor-specific cytolytic activity could also be detected in parental CMS-5 tumor-bearing animals 18 d after inoculation with tumor cells, if IL-2-producing CMS-5 cells but not unmodified parental tumor cells were used as targets. These studies highlight the potential advantages of localized secretion of cytokines mediated via gene transfer to induce potent anti-tumor immune responses.


Endocrinology ◽  
2004 ◽  
Vol 145 (2) ◽  
pp. 983-993 ◽  
Author(s):  
Anne Granger ◽  
Valérie Ngô-Muller ◽  
Christian Bleux ◽  
Céline Guigon ◽  
Hanna Pincas ◽  
...  

Abstract Previous studies dealing with the mechanisms underlying the tissue-specific and regulated expression of the GnRH receptor (GnRH-R) gene led us to define several cis-acting regulatory sequences in the rat GnRH-R gene promoter. These include functional sites for steroidogenic factor 1, activator protein 1, and motifs related to GATA and LIM homeodomain response elements as demonstrated primarily in transient transfection assays in mouse gonadotrope-derived cell lines. To understand these mechanisms in more depth, we generated transgenic mice bearing the 3.3-kb rat GnRH-R promoter linked to the human placental alkaline phosphatase reporter gene. Here we show that the rat GnRH-R promoter drives the expression of the reporter gene in pituitary cells expressing the LHβ and/or FSHβ subunit but not in TSHβ- or GH-positive cells. Furthermore, the spatial and temporal pattern of the transgene expression during the development of the pituitary was compatible with that characterizing the emergence of the gonadotrope lineage. In particular, transgene expression is colocalized with the expression of the glycoprotein hormone α-subunit at embryonic day 13.5 and with that of steroidogenic factor 1 at later stages of pituitary development. Transgene expression was also found in specific brain areas, such as the lateral septum and the hippocampus. A single promoter is thus capable of directing transcription in highly diverse tissues, raising the question of the different combinations of transcription factors that lead to such a multiple, but nevertheless cell-specific, expressions of the GnRH-R gene.


Biologia ◽  
2008 ◽  
Vol 63 (2) ◽  
Author(s):  
Marica Theiszová ◽  
Soňa Jantová ◽  
Silvia Letašiová ◽  
Ľuboš Valík ◽  
Martin Palou

AbstractThe number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH− groups and F− ions. The aim of this experimental investigation was to use the embryonal mouse fibroblast cell line NIH-3T3 for comparative study of basal cytotoxicity of fluoridated biomaterials FHA and FA discs. Hydroxyapatite (HA) disc, high-density polyethylene as negative control and polyvinyl chloride (PVC) containing organotin stabilizer as positive control were used as standard biomaterials. The appropriateness of the use of NIH-3T3 cells and their sensitivity for tested biomaterials were evaluated on the basis of five cytotoxic end points: cell proliferation, cell morphology, lactate dehydrogenase (LDH) released, protein and DNA cell content. The basal cytotoxicity of FHA, FA and HA discs was measured by direct contact method. FHA composite, FA and HA demonstrated in cell line NIH-3T3 nearly similar basal cytotoxicity increasing with the time of treatment. After 72 h of biomaterials treatment, about 25% inhibition of cell number, unchanged morphology of dividing cells, 6.31–0.16% increase of released LDH, about 10% inhibition of cell protein content and about 20% inhibition of DNA content was found. On the other hand, from the growth rates it resulted that NIH-3T3 cells, affected by tested biomaterials, divided about 20% slowlier than the control (untreated cells). Using the linear regression analysis we found out that deviations in measurements of cytotoxicity by four methods were as follows: less than 10% for cell number, protein and DNA content methods and 12.4% for released LDH method. Based on a good correlation of the cytotoxicity of biomaterials obtained from all end points we could conclude that fibroblast NIH-3T3 cell line was appropriate for measuring the basal cytoxicity of tested biomaterials.


Sign in / Sign up

Export Citation Format

Share Document