Microscale Elemental Imaging of Semiconductor Materials Using Focused Ion Beam Sims

1998 ◽  
Vol 4 (S2) ◽  
pp. 650-651 ◽  
Author(s):  
F. A. Stevie ◽  
S. W. Downey ◽  
S. Brown ◽  
T. Shofner ◽  
M. Decker ◽  
...  

The semiconductor industry demands elemental information from ever smaller regions. Two types of information in demand are two dimensional dopant profiles for the MOS transisitor and identification of particles as small as 30 nm diameter. The work of Levi-Setti and others resulted in liquid metal ion source (LMIS) instruments that provided secondary ion mass spectrometry (SIMS) images using Ga+ beams with 20 nm lateral resolution. It is now possible to purchase focused ion beam (FIB) systems with 5 nm beam capability and SIMS detection.The application of LMIS SIMS to meet semiconductor demands has been pursued in our laboratory with a FEI-800 FIB. SIMS imaging of semiconductor patterns after etch has shown the ability to identify boron and carbon contamination. Figure 1 shows boron in a comb structure after a BC13 etch. The boron can be shown to be removed by a cleaning step.

Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
C Girod-Hallegot ◽  
P. Hallegot ◽  
Y. L. Wang

The goals of high spatial resolution and high elemental sensitivity in the imaging microanalysis of biological tissues and materials have, to a large extent, been attained by using the method of secondary ion mass spectrometry (SIMS) following bombardment of a sample surface by a focused beam of heavy ions. The instrument that we will discuss and which has achieved these goals is a scanning ion microprobe originally developed in collaboration with Hughes Research Laboratories (UC-HRL SIM). It utilizes a 40-60 keV Ga+ probe, extracted from a point-like liquid metal ion source, that can be focused to a spot as small as 20 nm in diameter. During the past five years, much effort has been devoted to a reappraisal of well known SIMS methodologies in regard to their applicability to a range of lateral resolution (20-1000 nm) previously unexplored. Furthermore, of particular concern has been the identification of research areas whose demands could most profitably be matched by the performance of this new class of microprobes. The results of this effort are contained in over 21 topical publications and 14 review articles covering both instrumental aspects of our development and applications to a variety of interdisciplinary problems.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
James A. Whitby ◽  
Fredrik Östlund ◽  
Peter Horvath ◽  
Mihai Gabureac ◽  
Jessica L. Riesterer ◽  
...  

We describe the design and performance of an orthogonal time-of-flight (TOF) secondary ion mass spectrometer that can be retrofitted to existing focused ion beam (FIB) instruments. In particular, a simple interface has been developed for FIB/SEM instruments from the manufacturer Tescan. Orthogonal extraction to the mass analyser obviates the need to pulse the primary ion beam and does not require the use of monoisotopic gallium to preserve mass resolution. The high-duty cycle and reasonable collection efficiency of the new instrument combined with the high spatial resolution of a gallium liquid metal ion source allow chemical observation of features smaller than 50 nm. We have also demonstrated the integration of a scanning probe microscope (SPM) operated as an atomic force microscope (AFM) within the FIB/SEM-SIMS chamber. This provides roughness information, and will also allow true three dimensional chemical images to be reconstructed from SIMS measurements.


1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


Nanoscale ◽  
2018 ◽  
Vol 10 (35) ◽  
pp. 16521-16530 ◽  
Author(s):  
Dongmei Dong ◽  
Wenwen Wang ◽  
Aline Rougier ◽  
Guobo Dong ◽  
Mathias Da Rocha ◽  
...  

The visualization of the microstructure change and of the depth of lithium transport inside a monolithic ElectroChromic Device (ECD) is realized using an innovative combined approach of Focused Ion Beam (FIB), Secondary Ion Mass Spectrometry (SIMS) and Glow Discharge Optical Emission Spectroscopy (GDOES).


1994 ◽  
Vol 65 (7) ◽  
pp. 2276-2280 ◽  
Author(s):  
Kaoru Umemura ◽  
Hiroyasu Shichi ◽  
Setsuo Nomura

Sign in / Sign up

Export Citation Format

Share Document