Developing an Atomic Scale Model of Tilt Grain Boundary Potentials in Perovskite Oxides Using Z-contrast Imaging and EELS

2004 ◽  
Vol 10 (S02) ◽  
pp. 268-269
Author(s):  
Robert F. Klie ◽  
Marco Beleggia ◽  
Yimei Zhu ◽  
James P. Buban ◽  
Nigel D. Browning

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.

2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


2003 ◽  
Vol 68 (21) ◽  
Author(s):  
R. F. Klie ◽  
M. Beleggia ◽  
Y. Zhu ◽  
J. P. Buban ◽  
N. D. Browning

1998 ◽  
Vol 4 (S2) ◽  
pp. 688-689
Author(s):  
S. J. Pennycook ◽  
J. Buban ◽  
C. Prouteau ◽  
M. F. Chisholm ◽  
P. D. Nellist ◽  
...  

Due to the extemely short coherence lengths of the high-Tc superconductors (around 30 Å in the a-b plane), defects such as grain boundaries are obvious barriers to the flow of supercurrent. Within a few months of the discovery of these materials, it was shown how the critical current dropped four orders of magnitude as the grain boundary misorientaion increased from zero to 45°. Even today, there is no quantitative understanding of this behavior. A qualitative understanding is however possible through atomic resolution Z-contrast imaging on YBa2cu3O7-δ and SrTiO3 bicrystal grain boundaries, combined with bond-valence-sum analysis.The Z-contrast image of a YBa2cu3O7-δ low angle grain boundary in Fig. 1 shows the same kind of reconstructed dislocation cores as seen in SrTiO3, containing reconstructions on both the Cu and Y/Ba sublattices.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (8) ◽  
pp. 53-57 ◽  
Author(s):  
M.F. Chisholm ◽  
S.J. Pennycook

Interest in semiconductor grain boundaries relates to the development of polycrystalline materials for photovoltaics and integrated-circuit interconnects. Although these structures are responsible for deleterious electrical effects, there are few experimental techniques available to study them at the required atomic scale. Therefore models of the physical processes occurring at grain boundaries have necessarily taken a macroscopic approach. Fortunately recent developments have resulted in tools that provide unprecedented glimpses into these interfaces and that will allow us to address anew the connection between grain-boundary structure and properties.Z-Contrast ImagingWhen exploring the unknown, we rely heavily on our eyes (incoherent imaging) to provide a direct image of a new object. In order to explore the unforeseen atomic configurations present at extended defects in materials, it again would be desirable if one could obtain a directly interpretable image of the unfamiliar structures present in the defect cores. Z-contrast electron microscopy provides such a view with both atomic resolution and compositional sensitivity.This high-resolution imaging technique differs from conventional high-resolution phase-contrast imaging. The phase-contrast technique produces a coherent image, an interference pattern formed by recombining the waves diffracted by the specimen. In the Z-contrast technique, the image is incoherent; it is essentially a map of the scattering power of the specimen. Additionally as was first determined by Lord Rayleigh, the incoherent mode of image formation has double the resolving power of the coherent mode.


1997 ◽  
Vol 3 (S2) ◽  
pp. 653-654
Author(s):  
Yanfa Yan ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The atomic structure of a symmetric 27° [001] tilt grain boundary in MgO has been determined by high-resolution Z-contrast imaging using a 300 kV VG HB603U scanning transmission electron microscope with a 1.3 Å probe. The atomic configuration in the grain boundary core is found to be considerably less open than the structures proposed earlier for similar materials.Fig. 1 shows the Z-contrast image of the grain boundary and the projected structure derived from the image. It is clearly seen that the boundary is a shared plane of atoms with the same atomic column density as a bulk crystal {100} plane. The boundary consists of an array of separated perfect edge dislocation cores with Burgers vector b= a<100>. It is interesting to point out that the spacing between dislocation cores in the boundary is not uniform (as seen in Fig. 2). The arrangement, which follows the Fibonacci sequence, can be accurately predicted.


1999 ◽  
Vol 589 ◽  
Author(s):  
E.C. Dickey ◽  
X. Fan ◽  
M. Yong ◽  
S.B. Sinnott ◽  
S.J. Pennycook

AbstractThe core structures of two symmetric tilt [001” grain boundaries in yttria- stabilized cubic zirconia are determined by Z-contrast imaging microscopy. In particular, near-σ=13 (510) and σ=5 (310) boundaries are studied. Both grain boundaries are found to be composed of periodic arrays of basic grain-boundary structural units, whose atomic structures are determined from the Z-contrast images. While both grain boundaries maintain mirror symmetry across the boundary plane, the 36° boundary is found to have a more compact structural unit than the 24° boundary. Partially filled cation columns in the 24° boundary are believed to prevent cation crowding in the boundary core. The derived grain boundary structural models are the first developed for ionic crystals having the fluorite structure


2006 ◽  
Vol 12 (S02) ◽  
pp. 112-113
Author(s):  
RF Klie ◽  
MA Schofield ◽  
M Varela ◽  
SJ Pennycook ◽  
A Bleloch ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


1999 ◽  
Vol 589 ◽  
Author(s):  
Y. Ito ◽  
S. Stemmer ◽  
R. F. Klie ◽  
N. D. Browning ◽  
A. Sane ◽  
...  

AbstractThe high mobility of anion vacancies in oxygen deficient perovskite type materials makes these ceramics potential candidates for oxygen separation membranes. As a preliminary investigation of the defect chemistry in these oxides, we show here the analysis of SrCoO3−σ using atomic resolution Z-contrast imaging and electron energy loss spectroscopy in the scanning transmission electron microscope. In particular, after being subjected to oxidation/reduction cycles at high temperatures we find the formation of ordered microdomains with the brownmillerite structure.


2000 ◽  
Vol 640 ◽  
Author(s):  
S. T. Pantelides ◽  
R. Buczko ◽  
M. Di Ventra ◽  
S. Wang ◽  
S.-G. Kim ◽  
...  

ABSTRACTThis paper presents a review of new results obtained by a combination of first-principles theory, Z-contrast imaging, and electron-energy-loss spectroscopy in the context of a broader experimental/theoretical program to understand and control the atomic-scale structure of SiCSiO2 interfaces. The ultimate purpose is to achieve low interface trap densities for device applications. Results are given for global bonding arrangements in comparison with those of the Si-SiO2 interface, the mechanism of the oxidation process, the nature of possible interface defects and their passivation by N and H, and the formation and dissolution of C clusters in SiO2 during oxidation and reoxidation.


Sign in / Sign up

Export Citation Format

Share Document