Secondary Electron Emission Contrast of Quantum Wells in GaAs p-i-n Junctions

2009 ◽  
Vol 15 (2) ◽  
pp. 125-129 ◽  
Author(s):  
Enrique Grunbaum ◽  
Zahava Barkay ◽  
Yoram Shapira ◽  
Keith W.J. Barnham ◽  
David B. Bushnell ◽  
...  

AbstractThe secondary electron (SE) signal over a cleaved surface of GaAs p-i-n solar cells containing stacks of quantum wells (QWs) is analyzed by high-resolution scanning electron microscopy. The InGaAs QWs appear darker than the GaAsP barriers, which is attributed to the differences in electron affinity. This method is shown to be a powerful tool for profiling the conduction band minimum across junctions and interfaces with nanometer resolution. The intrinsic region is shown to be pinned to the Fermi level. Additional SE contrast mechanisms are discussed in relation to the dopant regions themselves as well as the AlGaAs window at the p-region. A novel method of in situ observation of the SE profile changes resulting from reverse biasing these structures shows that the built-in potential may be deduced. The obtained value of 0.7 eV is lower than the conventional bulk value due to surface effects.

2001 ◽  
Vol 89 (1) ◽  
pp. 689-696 ◽  
Author(s):  
P. Ascarelli ◽  
E. Cappelli ◽  
F. Pinzari ◽  
M. C. Rossi ◽  
S. Salvatori ◽  
...  

1989 ◽  
Vol 159 ◽  
Author(s):  
J. Osaka ◽  
N. Inoue

ABSTRACTAn ultra high vacuum scanning electron microscope equipped to an MBE system is utilized to study a transient of a surface atomic structure during MBE growth of GaAs and AlGaAs by the alternate supply method. Lateral growth of a Ga-monolayer over microns is realized utilizing Ga droplets. This is confirmed by discriminating the Ga and As top layer by using the secondary electron intensity difference between the Ga and As top layer. The growth mechanism of the Ga monolayer is discussed based on the results.


2013 ◽  
Vol 562-565 ◽  
pp. 1137-1142
Author(s):  
Hui Xia Feng ◽  
Bing Wang ◽  
Lin Tan ◽  
Na Li Chen

We prepared the polyaniline@polypyrrole (PAn@PPy) conductive composite by a novel method. The struction like Pre-prepared PAn as the core and PPy as the shell for the composite has been prepared by in-situ polymerization. The PAn@PPy conductive composite presents an electrical conductivity of 12.5 S/cm, which is much higher than pure PAn. The synthesized polymer composites are characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis (TG). The results indicated that PPy successfully grafted on PAn and the heat resistance of nanocomposite is remarkably increased.


Sign in / Sign up

Export Citation Format

Share Document