scholarly journals MeV Helium Ion Imaging of Gold Nanoparticles in Whole Cells

2011 ◽  
Vol 17 (S2) ◽  
pp. 662-663
Author(s):  
C Xiao ◽  
R Minqin ◽  
C Ce-Belle ◽  
C Udalagama ◽  
A Bettiol ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 472
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.


2015 ◽  
Vol 1132 ◽  
pp. 19-35
Author(s):  
S.O. Dozie-Nwachukwu ◽  
J.D. Obayemi ◽  
Y. Danyo ◽  
G. Etuk-Udo ◽  
N. Anuku ◽  
...  

This paper presents the biosynthesis of gold nanoparticles from the bacteria, Serratia marcescens.The intra-and extra-cellular synthesis of gold nanoparticles is shown to occur over a range of pH and incubation times in cell-free exracts and biomass ofserratia marcescensthat were reacted with 2.5mM Tetrachloroauric acid (HAuCl4). The formation of gold nanoparticles was identified initially via color changes from yellow auro-chloride to shades of red or purple in gold nanoparticle solutions. UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDS), Helium Ion Microscopy (HIM) and Dynamic Light Scattering (DLS) were also used to characterize gold nanoparticles produced within a range of pH conditions. The results show clearly that the production of gold nanoparticles from cell-free extracts require shorter times than the production of gold nanoparticles from the biomass.


COSMOS ◽  
2013 ◽  
Vol 09 (01) ◽  
pp. 65-74 ◽  
Author(s):  
FRANK WATT ◽  
XIAO CHEN ◽  
CE-BELLE CHEN ◽  
CHAMMIKA NB UDALAGAMA ◽  
MINQIN REN ◽  
...  

The way in which biological cells function is of prime importance, and the determination of such knowledge is highly dependent on probes that can extract information from within the cell. Probing deep inside the cell at high resolutions however is not easy: optical microscopy is limited by fundamental diffraction limits, electron microscopy is not able to maintain spatial resolutions inside a whole cell without slicing the cell into thin sections, and many other new and novel high resolution techniques such as atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM) are essentially surface probes. In this paper we show that microscopy using fast ions has the potential to extract information from inside whole cells in a unique way. This novel fast ion probe utilises the unique characteristic of MeV ion beams, which is the ability to pass through a whole cell while maintaining high spatial resolutions. This paper first addresses the fundamental difference between several types of charged particle probes, more specifically focused beams of electrons and fast ions, as they penetrate organic material. Simulations show that whereas electrons scatter as they penetrate the sample, ions travel in a straight path and therefore maintain spatial resolutions. Also described is a preliminary experiment in which a whole cell is scanned using a low energy (45 keV) helium ion microscope, and the results compared to images obtained using a focused beam of fast (1.2 MeV) helium ions. The results demonstrate the complementarity between imaging using low energy ions, which essentially produce a high resolution image of the cell surface, and high energy ions, which produce an image of the cell interior. The characteristics of the fast ion probe appear to be ideally suited for imaging gold nanoparticles in whole cells. Using scanning transmission ion microscopy (STIM) to image the cell interior, forward scattering transmission ion microscopy (FSTIM) to improve the contrast of the gold nanoparticles, and Rutherford Backscattering Spectrometry (RBS) to determine the depth of the gold nanoparticles in the cell, a 3D visualization of the nanoparticles within the cell can be constructed. Finally a new technique, proton induced fluorescence (PIF), is tested on a cell stained with DAPI, a cell-nucleic acid stain that exhibits a 20-fold increase in fluorescence when binding to DNA. The results indicate that the technique of PIF, although still at an early stage of development, has high potential since there does not seem to be any physical barrier to develop simultaneous structural and fluorescence imaging at sub 10 nm resolutions.


Author(s):  
William B. Thompson ◽  
John Notte ◽  
Larry Scipioni ◽  
Mohan Ananth ◽  
Lewis Stern ◽  
...  

Abstract Currently, the helium ion microscope (HIM) can be operated in three imaging modes; ion induced secondary electron (SE) mode, Rutherford backscatter imaging (RBI) mode, and scanning transmission ion imaging (STIM) mode. This paper will provide an overview of microscope’s ion source, its ion optics, the system architecture, the fundamentals of these three imaging modes and many FA related examples. Recently integrated with the microscope are a Rutherford Backscatter (RBS) detector for materials analysis and a gas injection system (GIS) for material modification. We will describe this new hardware and suggest how these additions could also contribute to the helium ion microscope being an important failure analysis tool.


2014 ◽  
Vol 20 (S3) ◽  
pp. 1338-1339 ◽  
Author(s):  
A. E. Curtin ◽  
A. N. Chiaramonti ◽  
A. W. Sanders ◽  
P. N. Ciesielski ◽  
C. Chapple ◽  
...  

1972 ◽  
Vol 33 (3) ◽  
pp. 553-564 ◽  
Author(s):  
A.P. Janssen ◽  
J.P. Jones

2021 ◽  
Vol 161 ◽  
pp. S1407-S1408
Author(s):  
L. Volz ◽  
T. Vichtl ◽  
C. Collins-Fekete ◽  
J. Seco

2020 ◽  
Vol 26 (S2) ◽  
pp. 1728-1731
Author(s):  
Pouya Tavousi ◽  
Bahar Ahmadi ◽  
Nicholas May ◽  
Sunshine Snider-Drysdale ◽  
Zahra Shahbazi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document