Examination of Biologically Active Nanocomplexes by Nanoparticle Tracking Analysis

2013 ◽  
Vol 19 (4) ◽  
pp. 808-813 ◽  
Author(s):  
Nikolai Nikitin ◽  
Ekaterina Trifonova ◽  
Olga Karpova ◽  
Joseph Atabekov

AbstractNanoparticle tracking analysis (NTA) was first applied to biologically active nanocomplexes to obtain concurrent information on their size, state of aggregation, concentration, and antigenic specificity in liquid. The subject of the NTA was an immunogenic complex (a candidate nanovaccine) comprised of spherical particles (SPs) generated by thermal remodeling of the tobacco mosaic virus and Rubella virus tetraepitopes exposed on the surface of SP.

2012 ◽  
Vol 93 (2) ◽  
pp. 400-407 ◽  
Author(s):  
Olga Karpova ◽  
Nikolai Nikitin ◽  
Sergey Chirkov ◽  
Ekaterina Trifonova ◽  
Anna Sheveleva ◽  
...  

We reported recently that RNA-free spherical particles (SPs) generated by thermal remodelling of tobacco mosaic virus (TMV) are capable of binding GFP to their surface. Here, we show that SPs represent a universal particle platform that can form compositions by binding a diversity of various foreign proteins/epitopes of viral and non-viral origin to their surface. Numerous molecules of a foreign protein linked to the SP surface were revealed by immunogold electron microscopy. Several SP-based compositions were obtained containing one of the following foreign antigens: antigenic determinant A of rubella virus E1 glycoprotein; a recombinant protein containing the M2e epitope of influenza virus A protein M2; a recombinant antigen consisting of three epitopes of influenza virus A haemagglutinin; potato virus X (PVX) coat protein (CP); BSA; and PVX CP fused with the epitope of plum pox virus CP. The ‘mixed’ compositions could be also assembled by binding two different foreign antigens to each of the SPs. Immunogenicity of foreign antigens adsorbed or linked covalently to SPs in the SP-based compositions was examined. The antigenic specificity of foreign antigens was retained, whereas their immunogenicity increased significantly. It was inferred that SPs exhibit immunopotentiating activity, in particular in the form of compositions comprising SP and foreign antigen linked covalently to their surface by formaldehyde.


2013 ◽  
Vol 32 (5) ◽  
pp. 701-708 ◽  
Author(s):  
Evgeny N. Dobrov ◽  
Nikolai A. Nikitin ◽  
Ekaterina A. Trifonova ◽  
Evgenia Yu. Parshina ◽  
Valentin V. Makarov ◽  
...  

1947 ◽  
Vol 31 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Gerald Oster

Centrifugally purified samples of tobacco mosaic virus were subjected to intense sound vibrations of 9,000 cycles per second for 0, 2, 8, 16, 32, and 64 minutes. The viscosity and stream birefringence of the samples decreased with time of sonic treatment, but no chemical changes were found. Electron micrographs of the samples show that the particles are broken perpendicular to their long axis. In the untreated sample 62 per cent of the particles are about 280 mµ in length. As sonic treatment continued, the number of particles of this length decreased exponentially with time, the number half this length increased and then decreased, and the number of quarter length particles subsequently increased and then decreased. The biological activity of the samples, as determined by the half leaf lesion method, decreased exponentially with time of sonic treatment with a rate constant given by k = 0.13 min.–1. A correlation exists between the size distributions and biological activity and shows that only the particles of length 280 mµ are the biologically active units. Tobacco mosaic virus particles can be made to aggregate end-to-end when the material is heated at its isoelectric point and reheated after being brought back to pH 7. Material which was not sonic treated and was made to aggregate showed reduced biological activity, but the activity was increased when the aggregated material was subjected to strong mechanical stirring. Material which was sonic treated for 32 minutes and which was made to aggregate showed the same biological activity as the material which was sonic treated but not aggregated.


Author(s):  
Irwin Bendet ◽  
Nabil Rizk

Preliminary results reported last year on the ion etching of tobacco mosaic virus indicated that the diameter of the virus decreased more rapidly at 10KV than at 5KV, perhaps reaching a constant value before disappearing completely.In order to follow the effects of ion etching on TMV more quantitatively we have designed and built a second apparatus (Fig. 1), which incorporates monitoring devices for measuring ion current and vacuum as well as accelerating voltage. In addition, the beam diameter has been increased to approximately 1 cm., so that ten electron microscope grids can be exposed to the beam simultaneously.


Author(s):  
Egbert W. Henry

Tobacco mosaic virus (TMV) infection has been studied in several investigations of Nicotiana tabacum leaf tissue. Earlier studies have suggested that TMV infection does not have precise infective selectivity vs. specific types of tissues. Also, such tissue conditions as vein banding, vein clearing, liquification and suberization may result from causes other than direct TMV infection. At the present time, it is thought that the plasmodesmata, ectodesmata and perhaps the plasmodesmata of the basal septum may represent the actual or more precise sites of TMV infection.TMV infection has been implicated in elevated levels of oxidative metabolism; also, TMV infection may have a major role in host resistance vs. concentration levels of phenolic-type enzymes. Therefore, enzymes such as polyphenol oxidase, peroxidase and phenylalamine ammonia-lyase may show an increase in activity in response to TMV infection. It has been reported that TMV infection may cause a decrease in o-dihydric phenols (chlorogenic acid) in some tissues.


2018 ◽  
Author(s):  
Madushani Dharmarwardana ◽  
André F. Martins ◽  
Zhuo Chen ◽  
Philip M. Palacios ◽  
Chance M. Nowak ◽  
...  

Superoxide overproduction is known to occur in multiple disease states requiring critical care yet non-invasive detection of superoxide in deep tissue remains a challenge. Herein, we report a metal-free magnetic resonance imaging (MRI) and electron paramagnetic resonance (EPR) active contrast agent prepared by “click conjugating” paramagnetic organic radical contrast agents (ORCAs) to the surface of tobacco mosaic virus (TMV). While ORCAs are known to be reduced <i>in vivo</i> to an MRI/EPR silent state, their oxidation is facilitated specifically by reactive oxygen species—in particular superoxide—and are largely unaffected by peroxides and molecular oxygen. Unfortunately, single molecule ORCAs typically offer weak MRI contrast. In contrast, our data confirm that the macromolecular ORCA-TMV conjugates show marked enhancement for <i>T<sub>1</sub></i> contrast at low field (<3.0 T), and <i>T<sub>2</sub></i> contrast at high field (9.4 T). Additionally, we demonstrated that the unique topology of TMV allows for “quenchless fluorescent” bimodal probe for concurrent fluorescence and MRI/EPR imaging, which was made possible by exploiting the unique inner and outer surface of the TMV nanoparticle. <a>Finally, we show TMV-ORCAs do not respond to normal cellular respiration, minimizing the likelihood for background, yet still respond to enzymatically produced superoxide in complicated biological fluids like serum.</a>


Sign in / Sign up

Export Citation Format

Share Document