scholarly journals Extraction of Three-Dimensional Information of Biological Membranous Tissue with Scanning Confocal Infrared Laser Microscope Tomography

2013 ◽  
Vol 19 (S5) ◽  
pp. 194-197 ◽  
Author(s):  
Soonwook Kwon ◽  
Se-Bum Choi ◽  
Min Gyu Park ◽  
Hyunung Yu ◽  
Seung-Woo Suh ◽  
...  

AbstractThe “LEXT” confocal laser scanning microscope has been used for the three-dimensional (3D) imaging of the surface of specimens, especially in materials science fields, by the penetration of near-infrared (NIR) light without mechanical cutting, deposition, or other specimen pretreatment. Noninvasive investigation of various biological tissues such as human spinal dura mater, rat aorta, and cornea without the dehydration process was successfully carried out with the “LEXT,” in order to access both surface and internal topographic images of the biological structures at a good status of the wet tissue such asin vivo, especially in measuring tissue thickness. The confocal NIR laser microscopy offers the viable means to visualize tissue architecture and its thickness in microdomain to integrate 3D images efficiently. We believe that the “LEXT” has a good application for biological researchers to study biomaterials, and it would be useful as a diagnostic tool in the near future.

1999 ◽  
Author(s):  
Hiroshi Ishiguro ◽  
Takashi Horimizu

Abstract Three-dimensional behavior of ice crystals and cells during the freezing and thawing of biological tissues was investigated microscopically in real time by using a confocal laser scanning microscope (CLSM) and a fluorescent dye, acridine orange (AO). Fresh tender meat (2nd pectoral muscles) of chicken was stained with the AO in physiological saline, and then frozen and thawed in a uniform temperature under two different thermal protocols: a) slow-cooling and rapid-warming and b) rapid-cooling and rapid-warming. The CLSM noninvasively produced tomograms of the tissues to clarify the pattern of freezing, morphology of ice crystals in the tissues, and the interaction between ice crystals and cells.


Author(s):  
Yurui Shen ◽  
Dezheng Hua ◽  
Xinhua Liu ◽  
Weihua Li ◽  
Grzegorz Krolczyk ◽  
...  

Abstract In order to study the rheological properties of aqueous magnetorheological fluids (MRFs) from microscopic point of view, an experimental observation method based on the fluorescence confocal laser scanning microscope is proposed to clearly produce the chain shape of the magnetic particles. Firstly, the mathematical model of the magnetic particles is established in a magnetic field using the magnetic dipole theory, and the MRFs with different fraction volumes and different magnetic fields are investigated. Furthermore, an aqueous MRFs experiment is prepared, in which the magnetic particles are combined with Alexa 488 fluorescent probe. On this basis, an observation method is innovatively developed using two-dimensional (2D) and three-dimensional (3D) image analysis by the fluorescence confocal microscope. The rheological mechanism of the aqueous MRFs is investigated using four different types of MRFs in an external magnetic field. The analysis results demonstrate that the simulation and experimental rheological properties of the MRFs are consistent with the magnetic dipole theory. Moreover, the proposed method is able to real-time observe the rheological process of the MRFs with a very high resolution, which ensures the correctness of the analysis results of the rheological mechanism.


2002 ◽  
Vol 18 (4) ◽  
pp. 173-183
Author(s):  
Wen-Jong Chen ◽  
Chih-Kung Lee ◽  
Shui-Shong Lu ◽  
Long-Sun Huang ◽  
Ta-Shun Chu ◽  
...  

ABSTRACTAn integrated optical method for measuring deformation of micro-mechanical systems with better than sub-micron resolutions is detailed. Both a confocal laser scanning microscope and a photon tunneling microscope were integrated into a single microscopy system due to their complimentary capabilities for examining sub-micrometer deformations. A halogen lamp and laser were adopted as the two light sources for the measurements. Since topographic information of samples up to a 15μm by 15μm area can be measured, a three-dimensional displacement field of the sample was extracted by comparing topographies of the same specimen area before and after deformation. The bending and twisting deformation of a micro-mirror driven by the electrostatic force was measured to demonstrate the capability of this newly developed instrument. The experimental data obtained agrees reasonably well with the theoretical results calculated by adopting an analytical solution and a finite element method. The small discrepancy in the result can be traced to the surface roughness effect, which is often non-negligible in micro-systems.


2019 ◽  
Vol 98 (11) ◽  
pp. 1239-1244 ◽  
Author(s):  
S.H. Park ◽  
Y.S. Lee ◽  
D.S. Lee ◽  
J.C. Park ◽  
R. Kim ◽  
...  

Dentin hypersensitivity commonly occurs due to opened dentinal tubules for many reasons. In our previous study, copine 7 (CPNE7) could induce dentin formation for an indirect pulp-capping model in vivo. This study aims to investigate the formation of tertiary dentin when CPNE7 is applied to intentionally exposed dentin with nothing over it in vivo, whether it affects microleakage of the teeth, and the penetration ability of CPNE7 molecules through dentinal tubules in vitro. Cervical dentin areas of 6 maxillary incisors of 5 beagles were exposed to a class V–like lesion, and 1 side of 3 maxillary incisors was adapted with recombinant CPNE7 protein for 5 min as the experimental group. The other side was the control group, and there was no treatment of ethylenediaminetetraacetic acid (EDTA) and CPNE7 after preparation. The defects were exposed without any restorations, and all beagles were sacrificed after 4 wk. The fluid penetration of exposed dentin areas was investigated by a microleakage-testing device and confocal laser scanning microscope. Tertiary dentin formation was confirmed with histological scanning electronic microscopic analysis. Tertiary dentin formation reduces dentinal fluid flow due to occluded tubules or discontinuity with primary or secondary dentin. The in vivo hypersensitivity model with the anterior teeth of beagle dogs showed newly formed tertiary dentin at the dentin-pulp boundary in recombinant CPNE7–treated teeth when compared with the untreated control group in histologic analysis. Scanning electronic microscopic analysis revealed occluded sites with mineral deposition of intratubular dentin. In the permeability test, the mean microleakage value of the CPNE7-treated group was significantly lower than that of the control group ( P < 0.05). The tubular penetration of rhodamine B–combined CPNE7 was confirmed under confocal laser scanning microscope. CPNE7 induces formation of tertiary dentin through shallowly exposed dentinal tubules, which decreases dentin permeability.


2016 ◽  
Vol 83 (6) ◽  
Author(s):  
Yibo Zou ◽  
Markus Kästner ◽  
Eduard Reithmeier

AbstractIn this article, fractal analysis combined with roughness measurement is proposed to characterize the new generations of HVOF sprayed coatings' surface textures. Two-dimensional and three-dimensional box counting algorithms are introduced to determine the fractal dimension, which is considered as a scale-invariant parameter and is able to describe chaos and complexity of the surface. For surface roughness metrology, a confocal laser scanning microscope with different lenses is used to acquire the areal topography, providing a sequence of height maps with different image resolutions. Typical areal roughness parameters are assessed based on the international standard ISO-25178. The results show that the fractal dimension is a powerful tool to depict the nature of the surface texture of the investigated coatings. Moreover, it is found that the traditional amplitude roughness parameters depend strongly on the range of the measurement field as well as the datasets' resolution, whereas the fractal dimension is rather invariant to the scales of the measured datasets. Finally, the correlation between the fractal dimension and roughness parameters is given at the end of this paper.


2007 ◽  
Vol 4 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Hyeon-Min Johng ◽  
Jung Sun Yoo ◽  
Tae-Jong Yoon ◽  
Hak-Soo Shin ◽  
Byung-Cheon Lee ◽  
...  

A novel application of fluorescent magnetic nanoparticles was made to visualize a new tissue which had not been detectable by using simple stereomicroscopes. This unfamiliar threadlike structure inside the lymphatic vessels of rats was demonstrated in vivo by injecting nanoparticles into lymph nodes and applying magnetic fields on the collecting lymph vessels so that the nanoparticles were taken up by the threadlike structures. Confocal laser scanning microscope images of cryosectioned specimens exhibited that the nanoparticles were absorbed more strongly by the threadlike structure than by the lymphatic vessels. Further examination using a transmission electron microscope revealed that the nanoparticles had been captured between the reticular fibers in the extracellular matrix of the threadlike structures. The emerging technology of nanoparticles not only allows the extremely elusive threadlike structures to be visualized but also is expected to provide a magnetically controllable means to investigate their physiological functions.


2020 ◽  
Vol 20 (10) ◽  
pp. 2040027
Author(s):  
YUSHU LIU ◽  
LIPING MA ◽  
WEI GAO ◽  
ZHICHENG LIU ◽  
SHOUXIN WANG ◽  
...  

Understanding the relationship between the changes in the axonal transport of the optic nerve (ON) and lamina cribrosa (LC) deformation will be helpful to estimate the degree of axonal transport block by measuring the LC deformation in vivo. First, the changes in the axonal transport of the ON were studied using an acute high intraocular pressure (IOP) model, which was established by perfusing saline water into the anterior chamber of cats. The IOP of cat was unilaterally elevated to and maintained at 30, 40, and 50[Formula: see text]mmHg. The axonal transport of the ON was examined by confocal laser scanning microscope. Then the deformations and stress distributions of the LC and ON were calculated using a three-dimensional finite element model of the LC microstructure including ON. The results showed axonal transport changes of ON increased with elevation of the IOPs. While Young’s modulus of the LC and ON were assumed as 0.1[Formula: see text]MPa and 0.03[Formula: see text]MPa, the numerical simulation results showed that LC had displacements of 0.02, 0.03, and 0.04[Formula: see text]mm backward at the IOPs of 30, 40, and 50[Formula: see text]mmHg, respectively. The calculated compressive strain applied to the ON were 0.0425, 0.0567, and 0.0709 under 30, 40, and 50[Formula: see text]mmHg IOP, respectively. The results of strain and stress analysis of LC and ON showed that the deformation of LC would compress the ON. The axonal transport abnormalities could be inferred by measuring the LC deformation in vivo.


Sign in / Sign up

Export Citation Format

Share Document