scholarly journals Cryo-EM Studies of Respiratory Complexes in a Hyperthermophilic Archaeon Pyrococcus furiosus Suggest an Evolutionary Path to Modern-Day Complex I

2019 ◽  
Vol 25 (S2) ◽  
pp. 1354-1355
Author(s):  
Hongjun Yu ◽  
Gerrit J. Schut ◽  
Chang-Hao Wu ◽  
Dominik K. Haja ◽  
Michael W. Adams ◽  
...  
2018 ◽  
Vol 293 (43) ◽  
pp. 16687-16696 ◽  
Author(s):  
Chang-Hao Wu ◽  
Gerrit J. Schut ◽  
Farris L. Poole ◽  
Dominik K. Haja ◽  
Michael W. W. Adams

Hyperthermophilic archaea contain a hydrogen gas–evolving,respiratory membrane–bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 μm) and Vmax values (12 μmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo′ = −480 mV) to reduce sulfane sulfur (Eo′ −260 mV) and cleave organic (RSnR, n ≥ 3) and anionic polysulfides (Sn2−, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.


1998 ◽  
Vol 180 (8) ◽  
pp. 2232-2236 ◽  
Author(s):  
Yoshizumi Ishino ◽  
Kayoko Komori ◽  
Isaac K. O. Cann ◽  
Yosuke Koga

ABSTRACT One of the most puzzling results from the complete genome sequence of the methanogenic archaeon Methanococcus jannaschii was that the organism may have only one DNA polymerase gene. This is because no other DNA polymerase-like open reading frames (ORFs) were found besides one ORF having the typical α-like DNA polymerase (family B). Recently, we identified the genes of DNA polymerase II (the second DNA polymerase) from the hyperthermophilic archaeonPyrococcus furiosus, which has also at least one α-like DNA polymerase (T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, Genes Cells 2:499–512, 1997). The genes in M. jannaschiiencoding the proteins that are homologous to the DNA polymerase II ofP. furiosus have been located and cloned. The gene products of M. jannaschii expressed in Escherichia colihad both DNA polymerizing and 3′→5′ exonuclease activities. We propose here a novel DNA polymerase family which is entirely different from other hitherto-described DNA polymerases.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58497 ◽  
Author(s):  
Kazuo Tori ◽  
Sonoko Ishino ◽  
Shinichi Kiyonari ◽  
Saki Tahara ◽  
Yoshizumi Ishino

2000 ◽  
Vol 182 (9) ◽  
pp. 2559-2566 ◽  
Author(s):  
Donald E. Ward ◽  
Servé W. M. Kengen ◽  
John van der Oost ◽  
Willem M. de Vos

ABSTRACT Alanine aminotransferase (AlaAT) was purified from cell extracts of the hyperthermophilic archaeon Pyrococcus furiosusby multistep chromatography. The enzyme has an apparent molecular mass of 93.5 kDa, as estimated by gel filtration, and consists of two identical subunits of 46 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence. The AlaAT displayed a broader substrate specificity than AlaATs from eukaryal sources and exhibited significant activity with alanine, glutamate, and aspartate with either 2-oxoglutarate or pyruvate as the amino acceptor. Optimal activity was found in the pH range of 6.5 to 7.8 and at a temperature of over 95°C. The N-terminal amino acid sequence of the purified AlaAT was determined and enabled the identification of the gene encoding AlaAT (aat) in theP. furiosus genome database. The gene was expressed inEscherichia coli, and the recombinant enzyme was purified. The pH and temperature dependence, molecular mass, and kinetic parameters of the recombinant were indistinguishable from those of the native enzyme from P. furiosus. Thek cat/Km values for alanine and pyruvate formation were 41 and 33 s−1mM−1, respectively, suggesting that the enzyme is not biased toward either the formation of pyruvate, or alanine. Northern analysis identified a single 1.2-kb transcript for the aatgene. In addition, both the aat and gdh(encoding the glutamate dehydrogenase) transcripts appear to be coregulated at the transcriptional level, because the expression of both genes was induced when the cells were grown on pyruvate. The coordinated control found for the aat and gdhgenes is in good agreement with these enzymes acting in a concerted manner to form an electron sink in P. furiosus.


Sign in / Sign up

Export Citation Format

Share Document