scholarly journals Electric Field-Induced Surface Melting of Gold Observed In Situ at Room Temperature and at Atomic Resolution Using TEM

2019 ◽  
Vol 25 (S2) ◽  
pp. 1830-1831 ◽  
Author(s):  
Ludvig de Knoop ◽  
Mikael Juhani Kuisma ◽  
Joakim Löfgren ◽  
Kristof Lodewijks ◽  
Mattias Thuvander ◽  
...  
2001 ◽  
Vol 7 (S2) ◽  
pp. 386-387
Author(s):  
Pratibha L. Gai

Silica and titania based ceramics and their analogs are some of the most fundamental in crystal chemistry and ceramic science Our interests include applications of nanostructures and chemical composites of the ceramics in nanoelectronics, chemical processes and as scaffolds in biotechnologies. Finely divided titania is used in a vast array of products including paper, paint, food and clothing. Novel microscopy methods including dynamic environmental-high resolution transmission EM (EHREM) at the atomic level, FESEM and cathodoluminescence are leading to striking progress in the development of the ceramic nanotechnologies.Phase transformations in the cristobalite form of silica, from the tetragonal a phase (low or room temperature form) to the cubic β phase (high temperature, (270°C) form) result in discontinuous thermal expansion and are not conducive to nanotechnology. Here we report fundamental in situatomic resolution studies of the phase transformations using EHREM and have used the results to design a number of stable, single-phase structures at room temperature (RT).


2020 ◽  
Vol 76 (8) ◽  
pp. 751-758
Author(s):  
Jose A. Gavira ◽  
Isaac Rodriguez-Ruiz ◽  
Sergio Martinez-Rodriguez ◽  
Shibom Basu ◽  
Sébastien Teychené ◽  
...  

Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.


MRS Advances ◽  
2016 ◽  
Vol 1 (20) ◽  
pp. 1495-1500 ◽  
Author(s):  
Zeke Insepov ◽  
Kurbangali B. Tynyshtykbaev ◽  
Ardak Ainabayev ◽  
Anatoly F. Vyatkin

ABSTRACTMeasurements of the induced acoustoelectric (IAEC) current in graphene subjected to a surface acoustic wave (SAW) discovered a quantisized character of acoustoelectric current at low bias voltage (Vbias) . The quantisized nature of IAEC has been obtained in all measurements as a result of interaction of SAW and an applied an external electric field. The acoustoelectric currents were studied near the point of electrical neutrality at room temperature. Raman spectra of graphene under the in-situ SAW influence and at an external electric field bias are presented.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (15) ◽  
pp. 2246-2256 ◽  
Author(s):  
Zhong Ren ◽  
Medine Ayhan ◽  
Sepalika Bandara ◽  
Kalinga Bowatte ◽  
Indika Kumarapperuma ◽  
...  

Recent developments in serial crystallography have been driven by two scientific goals – first, static structure determination from nano or microcrystals that are difficult for cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution.


Author(s):  
César D. Fermin ◽  
Dale Martin

Otoconia of higher vertebrates are interesting biological crystals that display the diffraction patterns of perfect crystals (e.g., calcite for birds and mammal) when intact, but fail to produce a regular crystallographic pattern when fixed. Image processing of the fixed crystal matrix, which resembles the organic templates of teeth and bone, failed to clarify a paradox of biomineralization described by Mann. Recently, we suggested that inner ear otoconia crystals contain growth plates that run in different directions, and that the arrangement of the plates may contribute to the turning angles seen at the hexagonal faces of the crystals.Using image processing algorithms described earlier, and Fourier Transform function (2FFT) of BioScan Optimas®, we evaluated the patterns in the packing of the otoconia fibrils of newly hatched chicks (Gallus domesticus) inner ears. Animals were fixed in situ by perfusion of 1% phosphotungstic acid (PTA) at room temperature through the left ventricle, after intraperitoneal Nembutal (35mg/Kg) deep anesthesia. Negatives were made with a Hitachi H-7100 TEM at 50K-400K magnifications. The negatives were then placed on a light box, where images were filtered and transferred to a 35 mm camera as described.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


Sign in / Sign up

Export Citation Format

Share Document