A Study of Membrane Impact on Spatial Resolution of Liquid In Situ Transmission Electron Microscope

2020 ◽  
Vol 26 (1) ◽  
pp. 126-133
Author(s):  
Ming Li ◽  
Ruth Knibbe

AbstractMicrochip technology with electron transparent membranes is a key component for in situ liquid transmission electron microscope (TEM) characterization. The membranes can significantly influence the TEM imaging spatial resolution, not only due to introducing additional material layers but also due to the associated bulging. The membrane bulging is largely defined by the membrane materials, thickness, and short dimension. The impact of the membrane on the spatial resolution, especially the extent of its bulging, was systematically investigated through the impact on the signal-to-noise ratio, chromatic aberration, and beam broadening. The optimization of the membrane parameters is the key component when designing the in situ TEM liquid cell. The optimal membrane thickness of 50 nm was found which balances the impact of membrane bulging and membrane thickness. Beyond this, the short membrane window dimension and the chip nominal spacing should be minimized. However, these two parameters have practical limitations in regards to chip handling.

2006 ◽  
Vol 12 (6) ◽  
pp. 498-505 ◽  
Author(s):  
Thomas Walther ◽  
Heiko Stegmann

Experimental results from the first monochromated and aberration-corrected scanning transmission electron microscope operated at 200 kV are described. The formation of an electron probe with a diameter of less than 0.2 nm at an energy width significantly under 0.3 eV and its planned application to the chemical analysis of nanometer-scale structures in materials science are described. Both energy and spatial resolution will benefit from this: The monochromator improves the energy resolution for studies of energy loss near edge structures. The Cs corrector allows formation of either a smaller probe for a given beam current or yields, at fixed probe size, an enhanced beam current density using a larger condenser aperture. We also point out another advantage of the combination of both components: Increasing the convergence angle by using larger condenser apertures in an aberration-corrected instrument will enlarge the undesirable chromatic focus spread. This in turn influences spatial resolution. The effect of polychromatic probe tails is proportional to the product of convergence angle, chromatic aberration constant, and energy spread. It can thus be compensated for in our new instrument by decreasing the energy width by the same factor as the beam convergence is increased to form a more intense probe. An alternative in future developments might be hardware correction of the chromatic aberration, which could eliminate the chromatic probe spread completely.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
Robert C. Cieslinski ◽  
H. Craig Silvis ◽  
Daniel J. Murray

An understanding of the mechanical behavior polymers in the ductile-brittle transition region will result in materials with improved properties. A technique has been developed that allows the realtime observation of dynamic plane stress failure mechanisms in the transmission electron microscope. With the addition of a cryo-tensile stage, this technique has been extented to -173°C, allowing the observation of deformation during the ductile-brittle transition.The technique makes use of an annealed copper cartridge in which a thin section of bulk polymer specimen is bonded and plastically deformed in tension in the TEM using a screw-driven tensile stage. In contrast to previous deformation studies on solvent-cast films, this technique can examine the frozen-in morphology of a molded part.The deformation behavior of polypropylene and polypropylene impact modified with EPDM (ethylene-propylene diene modified) and PE (polyethylene) rubbers were investigated as function of temperature and the molecular weight of the impact modifier.


2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhongquan Liao ◽  
Leonardo Medrano Sandonas ◽  
Tao Zhang ◽  
Martin Gall ◽  
Arezoo Dianat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document