Impact of Energy-Dispersive Spectrometry in Materials Science Microanalysis

1998 ◽  
Vol 4 (6) ◽  
pp. 567-575 ◽  
Author(s):  
David B. Williams

X-ray microanalysis of materials using energy-dispersive spectrometry (EDS) has made the greatest impact in studies of compositional changes at atomic-level interfaces. The small physical dimensions of the silicon detector make EDS the X-ray analyzer of choice for analytical transmission electron microscopy (AEM). X-ray analysis of thin foils in the AEM has contributed to our understanding of elemental segregation to interphase interfaces and grain boundaries, as well as other planar defects. Measurement of atomic diffusion on a small scale close to interphase interfaces has permitted determination of substitutional atomic diffusivities several orders of magnitude smaller than previously possible and has also led to the determination of low-temperature equilibrium phase diagrams through the measurement of local interface compositions. Elemental segregation to grain boundaries is responsible for such deleterious behavior as temper embrittlement, stress-corrosion cracking, and other forms of intergranular failure. On the other hand, segregation can bring about improvement in behavior: sintering aids in ceramics and de-embrittlement of intermetallics. EDS in the AEM has been responsible for quantitative analysis of all aspects of the segregation process and, more recently, in combination with electron energy-loss spectrometry (EELS) has given insight into why boundary segregation results in such significant macroscopic changes in properties.

2013 ◽  
Vol 652-654 ◽  
pp. 2465-2468 ◽  
Author(s):  
Jing Wei Zhao ◽  
Zheng Yi Jiang ◽  
Dong Bin Wei

Quantitative investigation is made on the elemental segregation in different zones of a heavy microalloyed cast steel by energy dispersive X-ray spectroscopy. It is demonstrated that C shows serious segregation tendency than that of Mn and Si, and the degree of C segregation in the surface zone is higher than that in the central zone. C enrichment is generally observed at both dendrite arm and grain boundaries, and more C segregation at dendrite arm boundary in contrast to that at grain boundary is found in this steel. The distribution of C concentration shows a decreased trend from root to tip along the dendrite arm boundary. The C concentration at trigeminal boundary intersection shows higher level than that at other position of the grain boundaries.


2019 ◽  
Vol 25 (05) ◽  
pp. 1075-1105 ◽  
Author(s):  
Dale E. Newbury ◽  
Nicholas W.M. Ritchie

Abstract2018 marked the 50th anniversary of the introduction of energy dispersive X-ray spectrometry (EDS) with semiconductor detectors to electron-excited X-ray microanalysis. Initially useful for qualitative analysis, EDS has developed into a fully quantitative analytical tool that can match wavelength dispersive spectrometry for accuracy in the determination of major (mass concentration C > 0.1) and minor (0.01 ≤ C ≤ 0.1) constituents, and useful accuracy can extend well into the trace (0.001 < C < 0.01) constituent range even when severe peak interference occurs. Accurate analysis is possible for low atomic number elements (B, C, N, O, and F), and at low beam energy, which can optimize lateral and depth spatial resolution. By recording a full EDS spectrum at each picture element of a scan, comprehensive quantitative compositional mapping can also be performed.


1998 ◽  
Vol 13 (8) ◽  
pp. 2100-2104 ◽  
Author(s):  
Junyong Kang ◽  
Tomoya Ogawa

Precipitates in GaN epilayers grown on sapphire substrates were investigated by atomic number contrast (ANC), wavelength-dispersive x-ray spectrometry (WDS), energy-dispersive spectrometry (EDS), and cathodoluminescence (CL) techniques. The results showed that the precipitates are mainly composed of gallium and oxygen elements and distribute more sparsely and inhomogeneously in directions in the sample grown on substrate nitridated for a longer period. Yellow luminescence intensity was imaged to be stronger in the precipitates. The results suggest that the precipitates are formed on dislocations and grain boundaries by substituting oxygen onto the nitrogen site, and result in the formations of deep levels nearby.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2005 ◽  
Vol 39 (4) ◽  
pp. 391-394 ◽  
Author(s):  
Binbin Wang ◽  
John C. Jackson ◽  
Curtis Palmer ◽  
Baoshan Zheng ◽  
Robert B. Finkelman
Keyword(s):  

1994 ◽  
Vol 349 (6) ◽  
pp. 434-437 ◽  
Author(s):  
R. M. Agrawal ◽  
S. N. Jha ◽  
Rugmini Kaimal ◽  
S. K. Malhotra ◽  
B. L. Jangida

Sign in / Sign up

Export Citation Format

Share Document