Functorial properties of algebraic closure and Skolemization

Author(s):  
C. J. Ash ◽  
A. Nerode

AbstractIt is shown that no functor F exists from the category of sets with injections, to the category of algebraically closed fields of given characteristic, with monomorphisms, having the properties that for all sets A. F(A) is an algebraically closed field having transcendence base A and for all injections f. F(f) extends f. There does exist such a functor from the category of linearly-ordered sets with order monomorphisms.An application to model-theory using the same methods is given showing that while the theory of algebraically closed fields is ω-stable, its Skolemization is not stable in any power.

2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


2017 ◽  
Vol 2019 (6) ◽  
pp. 1863-1893 ◽  
Author(s):  
Jeffrey D Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.


1980 ◽  
Vol 29 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Robert M. Guralnick ◽  
Michael D. Miller

AbstractLet K be an algebraically closed field of characteristic zero, and S a nonempty subset of K such that S Q = Ø and card S < card K, where Q is the field of rational numbers. By Zorn's Lemma, there exist subfields F of K which are maximal with respect to the property of being disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F along with the lattice of intermediate subfields.


1980 ◽  
Vol 45 (3) ◽  
pp. 455-463 ◽  
Author(s):  
William H. Wheeler

Two questions on rings of strictly upper triangular matrices arising from B. Rose's work [5] are answered in this paper. An n × n matrix (αi, j) is strictly upper triangular if αi, j = 0 whenever i ≥ j. The ring of strictly upper triangular n × n matrices with entries from a field F will be denoted by Sn(F). Throughout this paper n will be an integer greater than 2. B. Rose [5] has shown that the complete theory of Sn(F) for an algebraically closed field F is ℵ1categorical. The first main result of this paper is that the rings Sn(F) and Sn(K) for fields F and K are isomorphic or elementarily equivalent if and only if F and K are isomorphic or elementarily equivalent, respectively (Corollary 1.6 and Theorem 2.2). This result shortens the proof of B. Rose's categoricity theorem [5, Theorem 7] by avoiding the co-stability considerations; furthermore, this result yields a proof of the converse of this categoricity theorem. The second main result is that the theory of rings of strictly upper triangular n × n matrices over algebraically closed fields is the model-completion of the theory of rings of strictly upper triangular n × n matrices over arbitrary fields (Theorem 2.5). This answers affirmatively the two conjectures at the end of [5].


1978 ◽  
Vol 43 (2) ◽  
pp. 250-259 ◽  
Author(s):  
Bruce I. Rose

AbstractLet n ≥ 3. The following theorems are proved.Theorem. The theory of the class of strictly upper triangular n × n matrix rings over fields is finitely axiomatizable.Theorem. If R is a strictly upper triangular n × n matrix ring over a field K, then there is a recursive map σ from sentences in the language of rings with constants for K into sentences in the language of rings with constants for R such that K ⊨ φ if and only if R φ σ(φ).Theorem. The theory of a strictly upper triangular n × n matrix ring over an algebraically closed field is ℵ1-categorical.


2005 ◽  
Vol 07 (06) ◽  
pp. 769-786 ◽  
Author(s):  
DRAGOMIR Ž. ĐOKOVIĆ ◽  
KAIMING ZHAO

This is a continuation of our previous work on Jordan decomposition of bilinear forms over algebraically closed fields of characteristic 0. In this note, we study Jordan decomposition of bilinear forms over any field K0 of characteristic 0. Let V0 be an n-dimensional vector space over K0. Denote by [Formula: see text] the space of bilinear forms f : V0 × V0 → K0. We say that f = g + h, where f, g, [Formula: see text], is a rational Jordan decomposition of f if, after extending the field K0 to an algebraic closure K, we obtain a Jordan decomposition over K. By using the Galois group of K/K0, we prove the existence of rational Jordan decompositions and describe a method for constructing all such decompositions. Several illustrative examples of rational Jordan decompositions of bilinear forms are included. We also show how to classify the unimodular congruence classes of bilinear forms over an algebraically closed field of characteristic different from 2 and over the real field.


Author(s):  
Po Hu ◽  
Igor Kriz ◽  
Kyle Ormsby

AbstractWe discuss certain calculations in the 2-complete motivic stable homotopy category over an algebraically closed field of characteristic 0. Specifically, we prove the convergence of motivic analogues of the Adams and Adams-Novikov spectral sequences, and as one application, discuss the 2-complete version of the complex motivic J -homomorphism.


2018 ◽  
Vol 71 (4) ◽  
pp. 819-842 ◽  
Author(s):  
Ivan Kaygorodov ◽  
Yury Volkov

AbstractThe work is devoted to the variety of two-dimensional algebras over algebraically closed fields. First we classify such algebras modulo isomorphism. Then we describe the degenerations and the closures of certain algebra series in the variety of two-dimensional algebras. Finally, we apply our results to obtain analogous descriptions for the subvarieties of flexible and bicommutative algebras. In particular, we describe rigid algebras and irreducible components for these subvarieties.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


Sign in / Sign up

Export Citation Format

Share Document