RATIONAL JORDAN DECOMPOSITION OF BILINEAR FORMS

2005 ◽  
Vol 07 (06) ◽  
pp. 769-786 ◽  
Author(s):  
DRAGOMIR Ž. ĐOKOVIĆ ◽  
KAIMING ZHAO

This is a continuation of our previous work on Jordan decomposition of bilinear forms over algebraically closed fields of characteristic 0. In this note, we study Jordan decomposition of bilinear forms over any field K0 of characteristic 0. Let V0 be an n-dimensional vector space over K0. Denote by [Formula: see text] the space of bilinear forms f : V0 × V0 → K0. We say that f = g + h, where f, g, [Formula: see text], is a rational Jordan decomposition of f if, after extending the field K0 to an algebraic closure K, we obtain a Jordan decomposition over K. By using the Galois group of K/K0, we prove the existence of rational Jordan decompositions and describe a method for constructing all such decompositions. Several illustrative examples of rational Jordan decompositions of bilinear forms are included. We also show how to classify the unimodular congruence classes of bilinear forms over an algebraically closed field of characteristic different from 2 and over the real field.

2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


1993 ◽  
Vol 45 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Ming–Huat Lim

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 83
Author(s):  
Vladimir Rovenski ◽  
Sergey Stepanov ◽  
Irina Tsyganok

In this paper, we study the kernel and spectral properties of the Bourguignon Laplacian on a closed Riemannian manifold, which acts on the space of symmetric bilinear forms (considered as one-forms with values in the cotangent bundle of this manifold). We prove that the kernel of this Laplacian is an infinite-dimensional vector space of harmonic symmetric bilinear forms, in particular, such forms on a closed manifold with quasi-negative sectional curvature are zero. We apply these results to the description of surface geometry.


Author(s):  
C. J. Ash ◽  
A. Nerode

AbstractIt is shown that no functor F exists from the category of sets with injections, to the category of algebraically closed fields of given characteristic, with monomorphisms, having the properties that for all sets A. F(A) is an algebraically closed field having transcendence base A and for all injections f. F(f) extends f. There does exist such a functor from the category of linearly-ordered sets with order monomorphisms.An application to model-theory using the same methods is given showing that while the theory of algebraically closed fields is ω-stable, its Skolemization is not stable in any power.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1382
Author(s):  
Roger D. Maddux

The Theorems of Pappus and Desargues (for the projective plane over a field) are generalized here by two identities involving determinants and cross products. These identities are proved to hold in the three-dimensional vector space over a field. They are closely related to the Arguesian identity in lattice theory and to Cayley-Grassmann identities in invariant theory.


Sign in / Sign up

Export Citation Format

Share Document