scholarly journals Remarks on motivic homotopy theory over algebraically closed fields

Author(s):  
Po Hu ◽  
Igor Kriz ◽  
Kyle Ormsby

AbstractWe discuss certain calculations in the 2-complete motivic stable homotopy category over an algebraically closed field of characteristic 0. Specifically, we prove the convergence of motivic analogues of the Adams and Adams-Novikov spectral sequences, and as one application, discuss the 2-complete version of the complex motivic J -homomorphism.

2017 ◽  
Vol 2019 (6) ◽  
pp. 1863-1893 ◽  
Author(s):  
Jeffrey D Achter ◽  
Sebastian Casalaina-Martin ◽  
Charles Vial

Abstract A cycle is algebraically trivial if it can be exhibited as the difference of two fibers in a family of cycles parameterized by a smooth integral scheme. Over an algebraically closed field, it is a result of Weil that it suffices to consider families of cycles parameterized by curves, or by abelian varieties. In this article, we extend these results to arbitrary base fields. The strengthening of these results turns out to be a key step in our work elsewhere extending Murre’s results on algebraic representatives for varieties over algebraically closed fields to arbitrary perfect fields.


Author(s):  
Tom Bachmann

Abstract We establish a kind of ‘degree $0$ Freudenthal ${\mathbb {G}_m}$ -suspension theorem’ in motivic homotopy theory. From this we deduce results about the conservativity of the $\mathbb P^1$ -stabilization functor. In order to establish these results, we show how to compute certain pullbacks in the cohomology of a strictly homotopy-invariant sheaf in terms of the Rost–Schmid complex. This establishes the main conjecture of [2], which easily implies the aforementioned results.


1980 ◽  
Vol 29 (4) ◽  
pp. 462-468 ◽  
Author(s):  
Robert M. Guralnick ◽  
Michael D. Miller

AbstractLet K be an algebraically closed field of characteristic zero, and S a nonempty subset of K such that S Q = Ø and card S < card K, where Q is the field of rational numbers. By Zorn's Lemma, there exist subfields F of K which are maximal with respect to the property of being disjoint from S. This paper examines such subfields and investigates the Galois group Gal K/F along with the lattice of intermediate subfields.


Astérisque ◽  
2021 ◽  
Vol 425 ◽  
Author(s):  
Tom BACHMANN ◽  
Marc HOYOIS

If $f : S' \to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal "norm" functor $f_\otimes : \mathcal{H}_{\bullet}(S')\to \mathcal{H}_{\bullet}(S)$, where $\mathcal{H}_\bullet(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finite étale, we show that it stabilizes to a functor $f_\otimes : \mathcal{S}\mathcal{H}(S') \to \mathcal{S}\mathcal{H}(S)$, where $\mathcal{S}\mathcal{H}(S)$ is the $\mathbb{P}^1$-stable motivic homotopy category over $S$. Using these norm functors, we define the notion of a  normed motivic spectrum, which is an enhancement of a motivic $E_\infty$-ring spectrum. The main content of this text is a detailed study of the norm functors and of normed motivic spectra, and the construction of examples. In particular: we investigate the interaction of norms with Grothendieck's Galois theory, with Betti realization, and with Voevodsky's slice filtration; we prove that the norm functors categorify Rost's multiplicative transfers on Grothendieck-Witt rings; and we construct normed spectrum structures on the motivic cohomology spectrum $H\mathbb{Z}$, the homotopy $K$-theory spectrum $KGL$, and the algebraic cobordism spectrum $MGL$. The normed spectrum structure on $H\mathbb{Z}$ is a common refinement of Fulton and MacPherson's mutliplicative transfers on Chow groups and of Voevodsky's power operations in motivic cohomology.


2020 ◽  
Vol 117 (40) ◽  
pp. 24757-24763
Author(s):  
Daniel C. Isaksen ◽  
Guozhen Wang ◽  
Zhouli Xu

We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a computational method using motivic homotopy theory, viewed as a deformation of classical homotopy theory. This yields a streamlined computation of the first 61 stable homotopy groups and gives information about the stable homotopy groups in dimensions 62 through 90. As an application, we determine the groups of homotopy spheres that classify smooth structures on spheres through dimension 90, except for dimension 4. The method relies more heavily on machine computations than previous methods and is therefore less prone to error. The main mathematical tool is the Adams spectral sequence.


1978 ◽  
Vol 43 (2) ◽  
pp. 250-259 ◽  
Author(s):  
Bruce I. Rose

AbstractLet n ≥ 3. The following theorems are proved.Theorem. The theory of the class of strictly upper triangular n × n matrix rings over fields is finitely axiomatizable.Theorem. If R is a strictly upper triangular n × n matrix ring over a field K, then there is a recursive map σ from sentences in the language of rings with constants for K into sentences in the language of rings with constants for R such that K ⊨ φ if and only if R φ σ(φ).Theorem. The theory of a strictly upper triangular n × n matrix ring over an algebraically closed field is ℵ1-categorical.


2018 ◽  
Vol 71 (4) ◽  
pp. 819-842 ◽  
Author(s):  
Ivan Kaygorodov ◽  
Yury Volkov

AbstractThe work is devoted to the variety of two-dimensional algebras over algebraically closed fields. First we classify such algebras modulo isomorphism. Then we describe the degenerations and the closures of certain algebra series in the variety of two-dimensional algebras. Finally, we apply our results to obtain analogous descriptions for the subvarieties of flexible and bicommutative algebras. In particular, we describe rigid algebras and irreducible components for these subvarieties.


1987 ◽  
Vol 39 (3) ◽  
pp. 733-747 ◽  
Author(s):  
J. F. Jardine

Let C be an arbitrary Grothendieck site. The purpose of this note is to show that, with the closed model structure on the category S Pre(C) of simplicial presheaves in hand, it is a relatively simple matter to show that the category S Pre(C)stab of presheaves of spectra (of simplicial sets) satisfies the axioms for a closed model category, giving rise to a stable homotopy theory for simplicial presheaves. The proof is modelled on the corresponding result for simplicial sets which is given in [1], and makes direct use of their Theorem A.7.This result gives a precise description of the associated stable homotopy category Ho(S Pre(C))stab, according to well known results of Quillen [6]. One will recall, however, that it is preferable to have several different descriptions of the stable homotopy category, for the construction of smash products and the like.


Author(s):  
C. J. Ash ◽  
A. Nerode

AbstractIt is shown that no functor F exists from the category of sets with injections, to the category of algebraically closed fields of given characteristic, with monomorphisms, having the properties that for all sets A. F(A) is an algebraically closed field having transcendence base A and for all injections f. F(f) extends f. There does exist such a functor from the category of linearly-ordered sets with order monomorphisms.An application to model-theory using the same methods is given showing that while the theory of algebraically closed fields is ω-stable, its Skolemization is not stable in any power.


2018 ◽  
Vol 154 (5) ◽  
pp. 883-917 ◽  
Author(s):  
Tom Bachmann

Let$S$be a Noetherian scheme of finite dimension and denote by$\unicode[STIX]{x1D70C}\in [\unicode[STIX]{x1D7D9},\mathbb{G}_{m}]_{\mathbf{SH}(S)}$the (additive inverse of the) morphism corresponding to$-1\in {\mathcal{O}}^{\times }(S)$. Here$\mathbf{SH}(S)$denotes the motivic stable homotopy category. We show that the category obtained by inverting$\unicode[STIX]{x1D70C}$in$\mathbf{SH}(S)$is canonically equivalent to the (simplicial) local stable homotopy category of the site$S_{\text{r}\acute{\text{e}}\text{t}}$, by which we mean thesmallreal étale site of$S$, comprised of étale schemes over$S$with the real étale topology. One immediate application is that$\mathbf{SH}(\mathbb{R})[\unicode[STIX]{x1D70C}^{-1}]$is equivalent to the classical stable homotopy category. In particular this computes all the stable homotopy sheaves of the$\unicode[STIX]{x1D70C}$-local sphere (over$\mathbb{R}$). As further applications we show that$D_{\mathbb{A}^{1}}(k,\mathbb{Z}[1/2])^{-}\simeq \mathbf{DM}_{W}(k)[1/2]$(improving a result of Ananyevskiy–Levine–Panin), reprove Röndigs’ result that$\text{}\underline{\unicode[STIX]{x1D70B}}_{i}(\unicode[STIX]{x1D7D9}[1/\unicode[STIX]{x1D702},1/2])=0$for$i=1,2$and establish some new rigidity results.


Sign in / Sign up

Export Citation Format

Share Document