SHARP CONSTANTS FOR MULTIVARIATE HAUSDORFF -INEQUALITIES
2018 ◽
Vol 106
(2)
◽
pp. 274-286
◽
Keyword(s):
In this paper, we focus on the multivariate Hausdorff operator of the form $$\begin{eqnarray}\mathbf{H}_{\unicode[STIX]{x1D6F7}}(f)(x)=\int _{(0,+\infty )^{n}}{\displaystyle \frac{\unicode[STIX]{x1D6F7}\big(\frac{x_{1}}{t_{1}},\frac{x_{2}}{t_{2}},\ldots ,\frac{x_{n}}{t_{n}}\big)}{t_{1}t_{2}\cdots t_{n}}}f(t_{1},t_{2},\ldots ,t_{n})\,\mathbf{dt},\end{eqnarray}$$ where $\mathbf{dt}=dt_{1}\,dt_{2}\cdots \,dt_{n}$ or $\mathbf{dt}=d_{q}t_{1}\,d_{q}t_{2}\cdots d_{q}t_{n}$ is the discrete measure in $q$-analysis. The sharp bounds for the multivariate Hausdorff operator on spaces $L^{p}$ with power weights are calculated, where $p\in \mathbb{R}\backslash \{0\}$.
2019 ◽
Vol 150
(3)
◽
pp. 1095-1112
◽
Keyword(s):
1973 ◽
Vol 73
(2)
◽
pp. 307-316
◽
Keyword(s):
1969 ◽
Vol 27
◽
pp. 160-161
1983 ◽
Vol 41
◽
pp. 708-709
1974 ◽
Vol 32
◽
pp. 436-437
1978 ◽
Vol 36
(1)
◽
pp. 548-549
◽
1978 ◽
Vol 36
(1)
◽
pp. 540-541
1978 ◽
Vol 36
(1)
◽
pp. 456-457
1988 ◽
Vol 46
◽
pp. 218-219