scholarly journals ON HIGHER DIMENSIONAL ARITHMETIC PROGRESSIONS IN MEYER SETS

Author(s):  
ANNA KLICK ◽  
NICOLAE STRUNGARU

Abstract In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over ${\mathbb Z}$ is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set $\Lambda $ and a fully Euclidean model set with the property that finitely many translates of cover $\Lambda $ , we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in $\Lambda $ if and only if k is at most the rank of the ${\mathbb Z}$ -module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ryo Horikoshi ◽  
Hiroyuki Higashino ◽  
Yoji Kobayashi ◽  
Hiroshi Kageyama

Abstract Structure model sets for inorganic compounds are generally expensive; their distribution to all students in a class is therefore usually impractical. We have therefore developed a structure model set to illustrate inorganic compounds. The set is constructed with inexpensive materials: ping-pong balls, and snap buttons. The structure model set can be used to illustrate isomerism in coordination compounds and periodic structures of ceramic perovskites. A hands-on activity using the structure model set was developed for high school students and was well-received by them. Despite the concepts being slightly advanced for them, the students’ retention of the knowledge gained through the activity was tested a week after they completed the activity and was found to be relatively high, demonstrating the usefulness of the activity based on the structure model set.


2002 ◽  
Vol 45 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Robert V. Moody

AbstractWe give a new measure-theoretical proof of the uniform distribution property of points in model sets (cut and project sets). Each model set comes as a member of a family of related model sets, obtained by joint translation in its ambient (the ‘physical’) space and its internal space. We prove, assuming only that the window defining themodel set ismeasurable with compact closure, that almost surely the distribution of points in any model set from such a family is uniform in the sense of Weyl, and almost surely the model set is pure point diffractive.


Author(s):  
POLONA DURCIK ◽  
VJEKOSLAV KOVAČ

Abstract We prove that sets with positive upper Banach density in sufficiently large dimensions contain congruent copies of all sufficiently large dilates of three specific higher-dimensional patterns. These patterns are: 2 n vertices of a fixed n-dimensional rectangular box, the same vertices extended with n points completing three-term arithmetic progressions, and the same vertices extended with n points completing three-point corners. Our results provide common generalizations of several Euclidean density theorems from the literature.


2013 ◽  
Vol 09 (04) ◽  
pp. 813-843 ◽  
Author(s):  
GREG MARTIN ◽  
NATHAN NG

Let L(s, χ) be a fixed Dirichlet L-function. Given a vertical arithmetic progression of T points on the line ℜs = ½, we show that at least cT/ log T of them are not zeros of L(s, χ) (for some positive constant c). This result provides some theoretical evidence towards the conjecture that all nonnegative ordinates of zeros of Dirichlet L-functions are linearly independent over the rationals. We also establish an upper bound (depending upon the progression) for the first member of the arithmetic progression that is not a zero of L(s, χ).


2017 ◽  
Vol 2019 (14) ◽  
pp. 4419-4430 ◽  
Author(s):  
Jonathan M Fraser ◽  
Kota Saito ◽  
Han Yu

AbstractWe provide estimates for the dimensions of sets in $\mathbb{R}$ which uniformly avoid finite arithmetic progressions (APs). More precisely, we say $F$ uniformly avoids APs of length $k \geq 3$ if there is an $\epsilon>0$ such that one cannot find an AP of length $k$ and gap length $\Delta>0$ inside the $\epsilon \Delta$ neighbourhood of $F$. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of $k$ and $\epsilon$. In the other direction, we provide examples of sets which uniformly avoid APs of a given length but still have relatively large Hausdorff dimension. We also consider higher dimensional analogues of these problems, where APs are replaced with arithmetic patches lying in a hyperplane. As a consequence, we obtain a discretized version of a “reverse Kakeya problem:” we show that if the dimension of a set in $\mathbb{R}^d$ is sufficiently large, then it closely approximates APs in every direction.


Author(s):  
Anna Klick ◽  
Nicolae Strungaru ◽  
Adi Tcaciuc

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3316 ◽  
Author(s):  
Qingcai Yang ◽  
Shuying Li ◽  
Yunpeng Cao ◽  
Fengshou Gu ◽  
Ann Smith

To ensure reliable and efficient operation of gas turbines, multiple model (MM) approaches have been extensively studied for online fault detection and isolation (FDI). However, current MM-FDI approaches are difficult to directly apply to gas path FDI, which is one of the common faults in gas turbines and is understood to mainly be due to the high complexity and computation in updating hypothetical gas path faults for online applications. In this paper, a fault contribution matrix (FCM) based MM-FDI approach is proposed to implement gas path FDI over a wide operating range. As the FCM is realized via an additive term of the healthy model set, the hypothetical models for various gas path faults can be easily established and updated online. In addition, a gap metric analysis method for operating points selection is also proposed, which yields the healthy model set from the equal intervals linearized models to approximate the nonlinearity of the gas turbine over a wide range of operating conditions with specified accuracy and computational efficiency. Simulation case studies conducted on a two-shaft marine gas turbine demonstrated the proposed approach is capable of adaptively updating hypothetical model sets to accurately differentiate both single and multiple faults of various gas path faults.


Author(s):  
Bernd Sing ◽  
T. Richard Welberry

AbstractIn this article, we show how the mathematical concept of a deformed model set can be used to gain insight into the diffraction pattern of quasicrystalline structures. We explain what a deformed model set is, what its characteristic features are and how it relates to certain disorder phenomena in solids. We then apply this concept to distorted Penrose tilings,


2016 ◽  
Vol 38 (3) ◽  
pp. 1048-1085 ◽  
Author(s):  
GERHARD KELLER ◽  
CHRISTOPH RICHARD

Model sets are projections of certain lattice subsets. It was realized by Moody [Uniform distribution in model sets. Canad. Math. Bull. 45(1) (2002), 123–130] that dynamical properties of such a set are induced from the torus associated with the lattice. We follow and extend this approach by studying dynamics on the graph of the map that associates lattice subsets to points of the torus and then we transfer the results to their projections. This not only leads to transparent proofs of known results on model sets, but we also obtain new results on so-called weak model sets. In particular, we prove pure point dynamical spectrum for the hull of a weak model set of maximal density together with the push forward of the torus Haar measure under the torus parametrization map, and we derive a formula for its pattern frequencies.


Sign in / Sign up

Export Citation Format

Share Document