scholarly journals SEMIABELIAN VARIETIES OVER SEPARABLY CLOSED FIELDS, MAXIMAL DIVISIBLE SUBGROUPS, AND EXACT SEQUENCES

2014 ◽  
Vol 15 (1) ◽  
pp. 29-69 ◽  
Author(s):  
Franck Benoist ◽  
Elisabeth Bouscaren ◽  
Anand Pillay

Given a separably closed field $K$ of characteristic $p>0$ and finite degree of imperfection, we study the $\sharp$ functor which takes a semiabelian variety $G$ over $K$ to the maximal divisible subgroup of $G(K)$. Our main result is an example where $G^{\sharp }$, as a ‘type-definable group’ in $K$, does not have ‘relative Morley rank’, yielding a counterexample to a claim in Hrushovski [J. Amer. Math. Soc. 9 (1996), 667–690]. Our methods involve studying the question of the preservation of exact sequences by the $\sharp$ functor, and relating this to issues of descent as well as model-theoretic properties of $G^{\sharp }$. We mention some characteristic 0 analogues of these ‘exactness-descent’ results, where differential algebraic methods are more prominent. We also develop the notion of an iterative D-structure on a group scheme over an iterative Hasse field, which is interesting in its own right, as well as providing a uniform treatment of the characteristic 0 and characteristic $p$ cases of ‘exactness descent’.

1994 ◽  
Vol 59 (1) ◽  
pp. 283-291 ◽  
Author(s):  
Alexandre V. Borovik ◽  
Ali Nesin

One of the purposes of this paper is to prove a partial Schur-Zassenhaus Theorem for groups of finite Morley rank.Theorem 2. Let G be a solvable group of finite Morley rank. Let π be a set of primes, and let H ⊲ G a normal π-Hall subgroup. Then H has a complement in G.This result has been proved in [1] with the additional assumption that G is connected, and thought to be generalized in [2] by the authors of the present article. Unfortunately in the last section of the latter paper there is an irrepairable mistake. Here we give a new proof of the Schur-Zassenhaus Theorem using the results of [2] up to the last section and a new result that we are going to state below.The second author has shown in [11] that a nilpotent ω-stable group is the central product of a divisible subgroup and a subgroup of bounded exponent, generalizing a well-known result of Angus Macintyre about abelian groups [8]. One could ask a similar question for solvable groups: are they a product of two subgroups, one divisible, one of bounded exponent? One is allowed to be hopeful because of the well-known decomposition of the connected solvable algebraic groups over algebraically closed fields as the product of the unipotent radical and a torus.


Author(s):  
D. F. Holt ◽  
N. Spaltenstein

AbstractThe classification of the nilpotent orbits in the Lie algebra of a reductive algebraic group (over an algebraically closed field) is given in all the cases where it was not previously known (E7 and E8 in bad characteristic, F4 in characteristic 3). The paper exploits the tight relation with the corresponding situation over a finite field. A computer is used to study this case for suitable choices of the finite field.


1999 ◽  
Vol 64 (3) ◽  
pp. 1280-1284 ◽  
Author(s):  
Ehud Hrushovski ◽  
Thomas Scanlon

We note here, in answer to a question of Poizat, that the Morley and Lascar ranks need not coincide in differentially closed fields. We will approach this through the (perhaps) more fundamental issue of the variation of Morley rank in families. We will be interested here only in sets of finite Morley rank. Section 1 consists of some general lemmas relating the above issues. Section 2 points out a family of sets of finite Morley rank, whose Morley rank exhibits discontinuous upward jumps. To make the base of the family itself have finite Morley rank, we use a theorem of Buium.


2010 ◽  
Vol 10 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Indranil Biswas ◽  
João Pedro P. Dos Santos

AbstractLet X be a smooth projective variety defined over an algebraically closed field k. Nori constructed a category of vector bundles on X, called essentially finite vector bundles, which is reminiscent of the category of representations of the fundamental group (in characteristic zero). In fact, this category is equivalent to the category of representations of a pro-finite group scheme which controls all finite torsors. We show that essentially finite vector bundles coincide with those which become trivial after being pulled back by some proper and surjective morphism to X.


2017 ◽  
Vol 166 (2) ◽  
pp. 297-323
Author(s):  
HAO CHANG ◽  
ROLF FARNSTEINER

AbstractLet be a finite group scheme over an algebraically closed field k of characteristic char(k) = p ≥ 3. In generalisation of the familiar notion from the modular representation theory of finite groups, we define the p-rank rkp() of and determine the structure of those group schemes of p-rank 1, whose linearly reductive radical is trivial. The most difficult case concerns infinitesimal groups of height 1, which correspond to restricted Lie algebras. Our results show that group schemes of p-rank ≤ 1 are closely related to those being of finite or domestic representation type.


1990 ◽  
Vol 55 (3) ◽  
pp. 1138-1142 ◽  
Author(s):  
Anand Pillay

We point out that a group first order definable in a differentially closed field K of characteristic 0 can be definably equipped with the structure of a differentially algebraic group over K. This is a translation into the framework of differentially closed fields of what is known for groups definable in algebraically closed fields (Weil's theorem).I restrict myself here to showing (Theorem 20) how one can find a large “differentially algebraic group chunk” inside a group defined in a differentially closed field. The rest of the translation (Theorem 21) follows routinely, as in [B].What is, perhaps, of interest is that the proof proceeds at a completely general (soft) model theoretic level, once Facts 1–4 below are known.Fact 1. The theory of differentially closed fields of characteristic 0 is complete and has quantifier elimination in the language of differential fields (+, ·,0,1, −1,d).Fact 2. Affine n-space over a differentially closed field is a Noetherian space when equipped with the differential Zariski topology.Fact 3. If K is a differentially closed field, k ⊆ K a differential field, and a and are in k, then a is in the definable closure of k ◡ iff a ∈ ‹› (where k ‹› denotes the differential field generated by k and).Fact 4. The theory of differentially closed fields of characteristic zero is totally transcendental (in particular, stable).


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


1993 ◽  
Vol 58 (2) ◽  
pp. 546-556
Author(s):  
Mark Kelly Davis ◽  
Ali Nesin

We know quite a lot about the general structure of ω-stable solvable centerless groups of finite Morley rank. Abelian groups of finite Morley rank are also well-understood. By comparison, nonabelian nilpotent groups are a mystery except for the following general results:• An ω1-categorical torsion-free nonabelian nilpotent group is an algebraic group over an algebraically closed field of characteristic 0 [Z3].• A nilpotent group of finite Morley rank is the central product of a definable subgroup of finite exponent and of a definable divisible subgroup [N3].• A divisible nilpotent group of finite Morley rank is the direct product of its torsion part (which is central) and of a torsion-free subgroup [N3].However, we do not understand nilpotent groups of bounded exponent. It seems that the classification of nilpotent (but nonabelian) p-groups of finite Morley rank is impossible. Even the nilpotent groups of Morley rank 2 contain insurmountable difficulties [C], [T] . At first glance, this may seem to be an obstacle to proving the Cherlin-Zil'ber conjecture (“simple groups of finite Morley rank are algebraic groups”). Our purpose in this article is to show that if such a group is a definable subgroup of a nonnilpotent group, then it is possible to obtain a classification within the boundaries of our present knowledge. In this respect, our article may be considered as a relief to those who are trying to classify simple groups of finite Morley rank.Before explicitly stating our result, we need the following definition.


1984 ◽  
Vol 49 (2) ◽  
pp. 625-629 ◽  
Author(s):  
Lou van den Dries

(1.1) A well-known example of a theory with built-in Skolem functions is (first-order) Peano arithmetic (or rather a certain definitional extension of it). See [C-K, pp. 143, 162] for the notion of a theory with built-in Skolem functions, and for a treatment of the example just mentioned. This property of Peano arithmetic obviously comes from the fact that in each nonempty definable subset of a model we can definably choose an element, namely, its least member.(1.2) Consider now a real closed field R and a nonempty subset D of R which is definable (with parameters) in R. Again we can definably choose an element of D, as follows: D is a union of finitely many singletons and intervals (a, b) where – ∞ ≤ a < b ≤ + ∞; if D has a least element we choose that element; if not, D contains an interval (a, b) for which a ∈ R ∪ { − ∞}is minimal; for this a we choose b ∈ R ∪ {∞} maximal such that (a, b) ⊂ D. Four cases have to be distinguished:(i) a = − ∞ and b = + ∞; then we choose 0;(ii) a = − ∞ and b ∈ R; then we choose b − 1;(iii) a ∈ R and b ∈ = + ∞; then we choose a + 1;(iv) a ∈ R and b ∈ R; then we choose the midpoint (a + b)/2.It follows as in the case of Peano arithmetic that the theory RCF of real closed fields has a definitional extension with built-in Skolem functions.


Sign in / Sign up

Export Citation Format

Share Document