Combined effect of chelating agents and ultrasound on biofilm removal from stainless steel surfaces. Application to “Escherichia coli milk” and “Staphylococcus aureus milk” biofilms

Biofilms ◽  
2004 ◽  
Vol 1 (1) ◽  
pp. 65-73 ◽  
Author(s):  
N. Oulahal ◽  
A. Martial-Gros ◽  
M. Bonneau ◽  
L. J. Blum

Two ultrasonic devices – flat (T1) and curved (T2) ultrasonic transducers – were developed to remove biofilms from opened and closed surfaces, respectively. The aim is to standardize biofilm removal for in situ sanitary control in the food industry. The biofilms studied in this work were model biofilms made with milk on stainless steel sheets. We have shown in a previous study that sonication could be employed to remove and resuspend biofilm consistently, with a good recovery rate, from opened surfaces. Plate counting was used to assess the efficiency of each treatment. A total removal of Escherichia coli and Staphylococcus aureus from model biofilms was obtained with T1: 10 s at 40 kHz. However, ultrasound applied with T2 (a patented curved transducer developed for closed surfaces: 10 s at 40 kHz) failed to completely remove these model biofilms: 30±7% and 66±10% for E. coli and S. aureus biofilms, respectively. In order to improve the biofilm removal from closed surfaces with T2, the effect of the application of ultrasound in combination with chelating agent preparations was investigated. The application of ultrasound with T2 in 0.05 mol EDTA or EGTA per litre dislodged the E. coli milk model biofilm, with 100±10% and 100±5% recovery yields, respectively. These results showed a synergism between ultrasonic waves and chelator preparations, i.e. the combination achieved three times the recovery rate of sonication alone (30%). However, when the same treatment was applied to the S. aureus milk model biofilm, the combined treatment with EDTA or EGTA did not significantly improve the recovery of the biofilm cells: 74±26% with EDTA at 0.025 mol/l and 41–47% with EGTA at 0.025 mol/l and 0.05 mol/l, respectively, compared with 66±10% for sonication alone. The combined treatment was in agreement with an industrial control, i.e. a good reproducible recovery of the biofilm in a few seconds (10 s) for E. coli milk biofilms but not for S. aureus biofilms.

Biofouling ◽  
2003 ◽  
Vol 19 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Nadia Oulahal- Lagsir ◽  
Adele Martial- Gros ◽  
Marc Bonneauc ◽  
Loic Bluma

Biofouling ◽  
2003 ◽  
Vol 19 (3) ◽  
pp. 159-168 ◽  
Author(s):  
NADIA OULAHAL-LAGSIR ◽  
ADELE MARTIAL-GROS ◽  
MARC BONNEAU ◽  
LOIC BLUM

Biofouling ◽  
2003 ◽  
Vol 19 (3) ◽  
pp. 159-168 ◽  
Author(s):  
Nadia Oulahal‐Lagsir ◽  
Adele Martial‐Gros ◽  
Marc Bonneau ◽  
Loic J. Blum

2020 ◽  
Vol 83 (8) ◽  
pp. 1302-1306
Author(s):  
EUN-SEON LEE ◽  
JONG-HUI KIM ◽  
MI-HWA OH

ABSTRACT In dairy plants, clean-in-place (CIP) equipment cannot be disassembled, making it difficult to clean the inner surface of pipes. In this study, the inhibitory effects of chemical agents on biofilms formed by three foodborne pathogens, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, was evaluated in a dairy CIP system. The experiment was conducted on a laboratory scale. Each of the three bacteria (200 μL) was inoculated onto stainless steel (SS) chips (25 by 25 mm), and the effect of single cleaning agents was evaluated. Individual treatments with NaClO (30, 50, 100, and 200 ppm), NaOH (0.005, 0.01, 0.05, and 0.1%), citric acid (1, 3, 5, and 7%), and nisin (5, 10, 25, 50, 100, and 200 ppm) were used to clean the SS chip for 10 min. The most effective concentration of each solution was selected for further testing in a commercial plant. Simultaneous cleaning with 200 ppm of NaClO (10 min) and 7% citric acid (10 min) reduced the biofilms of B. cereus, E. coli, and S. aureus by 6.9, 7.0, and 8.0 log CFU/cm2, respectively. Both 7% citric acid and 0.1% NaOH were optimal treatments for E. coli. NaClO and citric acid are approved for use as food additives in the Republic of Korea. Our results revealed that a combined treatment with NaClO and citric acid is the most effective approach for reducing biofilms formed by common foodborne pathogens on CIP equipment. These findings can contribute to the production of safe dairy products. HIGHLIGHTS


Author(s):  
N. I. Popov ◽  
◽  
M. S. Saipullayev ◽  
A. U. Koychuev ◽  
◽  
...  

The results of laboratory tests carried out on test surfaces made of stainless steel, tile and metlakh tile, wood, concrete are presented. As test microorganisms, museum cultures of Escherichia coli (strain 1257), Staphylococcus aureus (strain 209R), Mycobacteria (strain B-5), B. сereus (pcs. 96) were used. In the course of the experiments, disinfection regimes (concentration, exposure, consumption of disinfectant) were established for disinfecting smooth and rough surfaces. In this case, effective disinfection of all types of test surfaces contaminated with E. coli and S. aureus was obtained by processing 0,7% solution, respectively, for 1 and 3 hours at a rate of 0,5 liters / m2. Disinfection of test surfaces contaminated with Mycobacteria (strain B-5) and B. cereus (pcs. 96) spores reached 4,0%, respectively, after a single and 5,0% concentration after double treatment at a rate of 0,5 l/m2 for 24 hours exposure.


Author(s):  
N. I. Popov ◽  
◽  
A. V. Suvorov ◽  
S. A. Michko ◽  
S. M. Lobanov ◽  
...  

The results of laboratory tests of Megacid carried out on test surfaces made of stainless steel, tile and metlah tiles, wood, concrete are presented. Museum cultures of Escherichia coli (pieces 1257), Staphylococcus aureus (pieces 209Р), mycobacteria (pieces B-5) and B. cereus (pieces 96) were used as test microorganisms. During the experiments, disinfection modes were established (concentration, exposure, disinfectant consumption) for disinfecting of smooth and rough surfaces. At the same time, effective disinfection of test surfaces of all types contaminated with E. coli and S. aureus was established at treating with 3,0% solution at the rate of 0,5 l/m2, respectively for 1 and 3 hours of exposure. For disinfection of test surfaces contaminated with mycobacteria (pcs. B-5), it was necessary to irrigate simultaneously with 8,0% solution twice with an interval of 1 hour at 24 hours, at the rate of 0,5 l/m2 per irrigation.


Author(s):  
N.I. Popov ◽  
◽  
G.Sh. Shcherbakova ◽  
S.A. Michko ◽  
Z.E. Alieva ◽  
...  

The results of bactericidal and disinfection activity of «Biolok» solutions in laboratory conditions are presented. The research was carried out on test surfaces made of stainless steel, tile and metlakh tiles, wood and concrete. As test cultures were used museum cultures of Escherichia coli (1257 strain), Staphylococcus aureus (209-P strain), mycobacteria (B-5 strain) and Bac. cereus (96 strain). In the course of experiments, disinfection modes (concentration, exposure, and consumption of the solution) were established for disinfection of smooth and rough surfaces. At the same time, it was found that effective disinfection of test surfaces of all types contaminated with E. coli and S. aureus, when treated with a 3.0% solution, at the rate of 0.5 l/m2, respectively, for 1 and 3 hours of exposure. For disinfection the test surfaces contaminated with mycobacteria, it was necessary to irrigate with 5.0% solution of «Biolok» twice with an interval of 1 hour, with an exposure of 24 hours, at the rate of 0.5 l/m2, for each irrigation.


2018 ◽  
Vol 41 (4) ◽  
pp. 353-363
Author(s):  
Alberto J. Valencia-Botin ◽  
Melesio Gutiérrez-Lomelí ◽  
Juan A. Morales-Del-Río ◽  
Pedro J. Guerrero-Medina ◽  
Miguel A. Robles-García ◽  
...  

Actualmente existe la necesidad de hacer frente al problema de la resistencia a los antibióticos y al uso indiscriminado de fungicidas químicos en la agricultura. El objetivo de este trabajo fue evaluar el efecto inhibitorio de extractos acuosos, metanólicos, acetónicos y hexánicos de hoja y tallo de Vitex mollis Kunth (Lamiaceae) contra diferentes bacterias (Escherichia coli, Micrococcus luteus, Salmonella enterica y Staphylococcus aureus) y especies del hongo Fusarium (F. verticillioides, F. oxysporum, F. tapsinum y F. oxysporum f.sp. lycopersici) de importancia en la salud y en la agricultura, así como determinar su composición química general. Se determinaron las concentraciones inhibitorias mínimas (CIM) de todos los extractos por la técnica de microdilución, excepto del hexánico, que no presentó inhibición en las bacterias estudiadas. S. enterica fue la bacteria que mostró mayor sensibilidad al extracto metanólico de tallo (CIM = 28 μg mL-1), le siguieron M. luteus (CIM = 32 μg mL-1), S. aureus (CIM = 75 μg mL-1) y E. coli (CIM = 80 μg mL- 1). Los extractos metanólicos y acuosos de tallo presentaron mayor porcentaje de inhibición contra los diferentes tipos de Fusarium evaluados por el método de dilución en agar. Los extractos de V. mollis inhibieron a F. verticillioides entre 62 y 91 % con 120 μg mL-1 de extracto. El orden de las especies de hongos inhibidas por los extractos fue: F. verticillioides > F. oxysporum > F. tapsinum > F. oxysporum f.sp. lycopersici. La composición química de las especies se determinó mediante pruebas para fenoles, taninos, flavonoides, triterpenos, alcaloides, cumarinas y saponinas. Ninguno de los extractos presentó alcaloides y saponinas. Los fenoles (37.1 mg EAG/g muestra seca) y flavonoides (26.8 mg EQ/g muestra seca) fueron los compuestos mayoritarios en los extractos metanólicos y acuosos. En conclusión, se requieren cantidades muy pequeñas de extracto para la inhibición de bacterias y de Fusarium; por lo tanto, V. mollis puede ser considerada una fuente de metabolitos para este fin y en la agricultura como control alternativo dentro de un manejo integrado de enfermedades.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


Sign in / Sign up

Export Citation Format

Share Document