Dissection of quantitative trait loci for root characters and day length sensitivity in SynOpDH wheat (Triticum aestivum L.) bi-parental mapping population

2020 ◽  
Vol 18 (3) ◽  
pp. 130-142
Author(s):  
Harun Bektas ◽  
Christopher Earl Hohn ◽  
John Giles Waines

AbstractThe genetics of the root system is still not dissected for wheat and lack of knowledge prohibits the use of marker-assisted selection in breeding. To understand the genetic mechanism of root development, Synthetic W7984 × Opata M85 doubled-haploid (SynOpDH) mapping population was evaluated for root and shoot characteristics in PVC tubes until maturity. Two major quantitative trait loci (QTLs) for total root biomass were detected on homoeologous chromosomes 2A and 2D with logarithm of the odds scores between 6.25–10.9 and 11.8–20.86, and total phenotypic effects between 12.7–17.7 and 26.6–40.04% in 2013 and 2014, respectively. There was a strong correlation between days to anthesis and root and shoot biomass accumulation (0.50–0.81). The QTL for biomass traits on chromosome 2D co-locates with QTL for days to anthesis. The effect of extended vegetative growth, caused by photoperiod sensitivity (Ppd) genes, on biomass accumulation was always hypothesized, this is the first study to genetically support this theory.

2019 ◽  
Vol 132 (11) ◽  
pp. 3023-3033 ◽  
Author(s):  
Firdissa E. Bokore ◽  
Richard D. Cuthbert ◽  
Ron E. Knox ◽  
Arti Singh ◽  
Heather L. Campbell ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 829
Author(s):  
Tally I.C. Wright ◽  
Angela C. Burnett ◽  
Howard Griffiths ◽  
Maxime Kadner ◽  
James S. Powell ◽  
...  

Tetraploid landraces of wheat harbour genetic diversity that could be introgressed into modern bread wheat with the aid of marker-assisted selection to address the genetic diversity bottleneck in the breeding genepool. A novel bi-parental Triticum turgidum ssp. dicoccum Schrank mapping population was created from a cross between two landrace accessions differing for multiple physiological traits. The population was phenotyped for traits hypothesised to be proxies for characteristics associated with improved photosynthesis or drought tolerance, including flowering time, awn length, flag leaf length and width, and stomatal and trichome density. The mapping individuals and parents were genotyped with the 35K Wheat Breeders’ single nucleotide polymorphism (SNP) array. A genetic linkage map was constructed from 104 F4 individuals, consisting of 2066 SNPs with a total length of 3295 cM and an average spacing of 1.6 cM. Using the population, 10 quantitative trait loci (QTLs) for five traits were identified in two years of trials. Three consistent QTLs were identified over both trials for awn length, flowering time and flag leaf width, on chromosomes 4A, 7B and 5B, respectively. The awn length and flowering time QTLs correspond with the major loci Hd and Vrn-B3, respectively. The identified marker-trait associations could be developed for marker-assisted selection, to aid the introgression of diversity from a tetraploid source into modern wheat for potential physiological trait improvement.


2019 ◽  
Vol 157 (1) ◽  
pp. 20-30
Author(s):  
C. H. Zhao ◽  
H. Sun ◽  
C. Liu ◽  
G. M. Yang ◽  
X. J. Liu ◽  
...  

AbstractHeading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.


2014 ◽  
Vol 34 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Emir Islamovic ◽  
Donald E. Obert ◽  
Allen D. Budde ◽  
Mark Schmitt ◽  
Robert Brunick ◽  
...  

2008 ◽  
Vol 44 (5) ◽  
pp. 567-574 ◽  
Author(s):  
T. A. Pshenichnikova ◽  
S. V. Osipova ◽  
M. D. Permyakova ◽  
T. N. Mitrofanova ◽  
V. A. Trufanov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document