scholarly journals Preliminary Results of the Determination of Absolute Proper Motions of Stars Referred to Galaxies

1968 ◽  
Vol 1 ◽  
pp. 297-300
Author(s):  
N.V. Fatčihin

Absolute proper motions have been determined for 14000 stars in the 82 areas indicated in Figure 1. These proper motions result from measures made on 105 plate pairs taken with the Pulkovo normal astrograph which has a focal length of 3·5 m. The plates, which had an average epoch difference of 22·4 years, were measured film-to-film in a Repsold measuring machine. The number of galaxies used for defining zero proper motion was 271, and among the stars measured were 1283 from the AGK3. The probable error of a determination of proper motion from one plate pair wasThe images of the galaxies were estimated as having an average quality of 6 on a scale of 10. (Deutsch et al., 1955).

1970 ◽  
Vol 7 ◽  
pp. 5-25
Author(s):  
James Newcomb

The discovery and measurement of stellar proper motions has always been associated with machines: for proper motion measurements involve four activities: observation, recording, comparison and measurement. Participation by the astronomer in these activities has step by step been replaced partically or wholly by machines. First the observation and recording functions changed from visual to photographic – with the fine guiding done by the astronomer; then the comparison by the blink microscope and the measurement by visually operated measuring machines. On a comparative time scale, the next step – automation of the comparison and measurement function – has been much money, time, and effort away from the previous steps, but as this presentation and other presentations at this conference will show, machines of varying degrees of automation and astronomer participation are now in operation.


1994 ◽  
Vol 161 ◽  
pp. 173-176
Author(s):  
Chr. de Vegt ◽  
L. Winter ◽  
N. Zacharias

With the new Hamburg astrometric measuring machine, large sets of plates can be digitized very quickly with submicrometer accuracy. In particular about 2000 plates of the AGK2-catalog, mean epoch 1930, can be remeasured now for the first time to their limiting magnitude, about B = 11. The new AGK2-data therefore will cover practically the whole AC-catalog and TYCHO-stars in the northern hemisphere. All plates will be reduced using the HIPPARCOS results as the reference frame when available in 1996. The new AGK2-data will provide a unique data base for the determination of high accuracy proper motions (about 2 mas/yr) of all TYCHO stars in the northern hemisphere. Furthermore, for the first time a dense reference frame for a final reduction of the Astrographic Catalog (AC) and the large deep sky surveys will be generated by this catalog. The inferior situation in the southern hemisphere will be addressed briefly.


Author(s):  
Vogenauer Stefan

This commentary focuses on Article 5.1.6 of the UNIDROIT Principles of International Commercial Contracts (PICC) concerning the determination of the quality of performance. Under Art 5.1.6, where the quality of performance is neither fixed by, nor determinable from, the contract, a party is bound to render a performance of a quality that is reasonable and not less than average in the circumstances. The provision is a specific application of one of the general underlying principles of the PICC: the idea of favor contractus. This commentary discusses the priority of the general rules of contractual interpretation, average quality as a minimum threshold, standard of reasonableness, and burden of proof of the party alleging non-performance because of insufficient quality of performance.


1995 ◽  
Vol 148 ◽  
pp. 228-231
Author(s):  
J. Souchay ◽  
E. Schilbach

AbstractAs a first step of our open cluster programme a catalogue of proper motions and photographic U, B, V, R magnitudes for stars up to 18 mag within a region centered near Alcyone is presented. The catalogue is based on MAMA measurements of plates taken with Tautenburg and OCA (CERGA) Schmidt telescopes. The photometric survey includes ca. 65000 stars and covers a total field of about 25 square degrees. Proper motions have been obtained for ca. 40000 stars within a central 17 square degree region of this field. For the majority of stars in the survey an accuracy of 0.08 mag and 2 mas/year has been estimated for photometric data and proper motions, respectively. The results of the determination of the Pleiades membership up to 18th magnitude is presented.


1993 ◽  
Vol 156 ◽  
pp. 255-260
Author(s):  
E. Schilbach ◽  
J. Guibert ◽  
M. Geffert ◽  
S. Hirte

A programme for the determination of proper motions and photographic B, V, R magnitudes for stars up to 18m within a 4° by 4° region centered near Alcyone is described. We use MAMA measurements of plates taken with Tautenburg and OCA Schmidt telescopes as well as with the double refractor of Bonn and Carte du Ciel plates. To check the stability of the solution three different methods of reduction are applied.According to the results of the pilot programme a final proper motion accuracy of about 2 mas/a can be achieved for the majority of stars in the survey.


1986 ◽  
Vol 114 ◽  
pp. 205-211
Author(s):  
J. A. Hughes ◽  
D. K. Scott ◽  
C. A. Smith

Observations of the sun and major and minor planets made by transit circle telescopes are used to determine positions of the equinox and the celestial equator and, by repeated observing programs, the motions of these fiducial references. Long series of such absolute observations, when combined into catalogs such as the FK5, yield a fundamental coordinate system which is an observational approximation to an ideal, dynamically defined coordinate system. In such a system the equinox, for example, is defined implicitly by the right ascensions (at mean epoch) and the proper motions of the stars included in the catalog system, together with the adopted constant of precession. It may be noted that independent, highly accurate determinations of the latter quantity thus help to improve the fundamental proper motion system.


1995 ◽  
Vol 164 ◽  
pp. 406-406 ◽  
Author(s):  
M. Geffert ◽  
B. Dauphole ◽  
J. Colin ◽  
M. Odenkirchen ◽  
H.-J. Tucholke ◽  
...  

We have studied a sample of 26 globular clusters for which so far absolute proper motions exist in the literature. The proper motions were combined with distances and radial velocities for a determination of the space motion of the clusters. Using different galactic potentials (see Dauphole & Colin 1994 and references therein) we calculated the orbits of the globular clusters and their time averaged eccentricities, total energies, and apo- and perigalactic distances. The relation of the orbital quantities to the metallicities of the globular clusters has been studied. Preliminary results of this study were presented in Geffert et al. (1993).


1847 ◽  
Vol 137 ◽  
pp. 79-109 ◽  

The third volume of the Mémoires presentés par divers Savans of the Imperial Academy of St. Petersburg, published in 1837, contains a paper by Professor Argelander, in which that distinguished astronomer has discussed the question of the proper motion of the solar system, and determined the probable situation in space of the point towards which the sun is at present advancing. This determination was founded on the proper motions of 390 stars situated between the north pole and the tropic of Capricorn, as shown by a comparison of their positions in 1775 according to Bradley’s observations, reduced by Bessel, with their positions in 1830 computed from the observations made by Argelander himself at Abo; every star being taken into account which appeared to have a proper motion amounting to a tenth of a second in space annually. Two other investigations of the same question have since been published; one by Lundahl, founded on the proper motions of 147 stars, as shown by a comparison of the observations of Bradley and Pond, and the other by Otto Struve, based on 392 stars, whose proper motions were determined by a comparison of Bradley’s observations with those made at the observatory of Dorpat. From these three investigations the direction of the sun’s motion in space may be considered, perhaps, to have been determined with as great an approximation to accuracy as can be attained in the present state of our knowledge of the proper motions of the stars in the northern hemisphere. The recent catalogues of Mr. Johnson and the late Professor Henderson, deduced from the observations made by those astronomers respectively at St. Helena and the Cape of Good Hope, on being compared with the Cape observations of Lacaille made about the middle of the last century, show that a considerable number of the southern stars have also very appreciable proper motions; and it appeared to me to be a matter of some interest to inquire whether the proper motions so determined afford any confirmation of the results obtained by Argelander, Lundahl and Struve, or favoured the hypothesis of a displacement of the solar system. The result of this inquiry I have now the honour of submitting to the Royal Society, in whose Transactions the existence of relative displacements among the fixed stars was first announced, and the probable direction of the sun’s motion first indicated. Independently of theoretical considerations, the subject is of much importance in astronomy. The proper motions of the stars, which may be said to be the only residual astronomical phenomena now remaining to be accounted for by theory, mix themselves up with the determination of the precession and other fundamental elements; and the first step towards acquiring any knowledge of their laws, quantities, or directions, is obviously to distinguish between what is real and what is only apparent, and to separate from the whole observed displacement the effect due to the motion of our own system. Before proceeding to describe the data and results of the present investigation, it will be desirable, perhaps, to give a brief notice of the principal inquiries that have heretofore been undertaken with reference to the same subject.


2021 ◽  
Vol 163 (1) ◽  
pp. 1
Author(s):  
Dana I. Casetti-Dinescu ◽  
Caitlin K. Hansen ◽  
Terrence M. Girard ◽  
Vera Kozhurina-Platais ◽  
Imants Platais ◽  
...  

Abstract We measure the absolute proper motion of Leo I using a WFPC2/HST data set that spans up to 10 yr to date the longest time baseline utilized for this satellite. The measurement relies on ∼2300 Leo I stars located near the center of light of the galaxy; the correction to absolute proper motion is based on 174 Gaia EDR3 stars and 10 galaxies. Having generated highly precise, relative proper motions for all Gaia EDR3 stars in our WFPC2 field of study, our correction to the absolute EDR3 system does not rely on these Gaia stars being Leo I members. This new determination also benefits from a recently improved astrometric calibration of WFPC2. The resulting proper-motion value, (μ α , μ δ ) = (−0.007 ± 0.035, − 0.119 ± 0.026) mas yr−1 is in agreement with recent, large-area, Gaia EDR3-based determinations. We discuss all the recent measurements of Leo I’s proper motion and adopt a combined, multistudy average of ( μ α 3 meas , μ δ 3 meas ) = ( − 0.036 ± 0.016 , − 0.130 ± 0.010 ) mas yr−1. This value of absolute proper motion for Leo I indicates its orbital pole is well aligned with that of the vast polar structure, defined by the majority of the brightest dwarf spheroidal satellites of the Milky Way.


Sign in / Sign up

Export Citation Format

Share Document