scholarly journals Introductory Remarks to the Joint Discussion on Nuclei of Normal Galaxies

1980 ◽  
Vol 5 ◽  
pp. 133-133
Author(s):  
W. B. Burton

The papers which follow here were given at the Joint Discussion on Nuclei of Normal Galaxies, held in Montreal on August 21, 1979, at the XVIIth General Assembly of the International Astronomical Union. This Joint Discussion was jointly sponsored by IAU Commission 28 on Galaxies, by Commission 33 on Structure and Dynamics of the Galactic System, by Commission 34 on Interstellar Matter and Planetary Nebulae, and by Commission 40 on Radio Astronomy. The scientific organizing committee consisted of W. B. Burton (Minnesota), chairman, R. D. Ekers (Groningen), H. Okuda (Kyoto), D. E. Osterbrock (Lick), V. I. Pronik (Crimea), and D. W. Weedman (Pennsylvania).While preparing for this Joint Discussion, the organizing committee struggled with the problem of finding a suitable definition for the notorious word “normal” as applied to the enormously complicated phenomena of galaxies. What has become clear is that galactic nuclei of all sorts share an involvement in a continuous hierarchy. Thus the lower extent of the energy range exhibited by nuclei of Seyfert galaxies overlaps the upper extent of the energy range of galactic nuclei which most of us would classify as normal. Likewise, many agreeably-normal nuclei show signs of disruptive activity, high velocity dispersions, morphological asymmetries, and ejection. It has also become clear that study of nuclear phenomena must extend to include study of the entire bulge or core region. These matters are reflected in the papers which follow. These papers also collectively emphasize that galactic nuclei reveal different properties at different wave-lengths; presented at the Joint Discussion were results derived from optical and infrared data, as well as from millimeter and longer wavelength radio data. The papers also serve to put work on the nucleus of our own galaxy, which shows many of the same puzzling properties found in other normal galactic nuclei, into a pleasantly wider perspective.

2021 ◽  
Vol 922 (2) ◽  
pp. 159
Author(s):  
A. Traina ◽  
S. Marchesi ◽  
C. Vignali ◽  
N. Torres-Albà ◽  
M. Ajello ◽  
...  

Abstract We present the joint Chandra, XMM-Newton, and NuSTAR analysis of two nearby Seyfert galaxies, NGC 3081 and ESO 565-G019. These are the only two having Chandra data in a larger sample of 10 low-redshift (z ≤ 0.05), candidates Compton-thick (CT) Active Galactic Nuclei selected in the 15–150 keV band with Swift-BAT that were still lacking NuSTAR data. Our spectral analysis, performed using physically motivated models, provides an estimate of both the line-of-sight (l.o.s.) and average (N H,S ) column densities of the two torii. NGC 3081 has a Compton-thin l.o.s. column density N H,z = [0.58–0.62] × 1024 cm−2, but the N H,S , beyond the CT threshold (N H,S = [1.41–1.78] × 1024 cm−2), suggests a “patchy” scenario for the distribution of the circumnuclear matter. ESO 565-G019 has both CT l.o.s. and N H,S column densities (N H,z > 2.31 × 1024 cm−2 and N H,S > 2.57 × 1024 cm−2, respectively). The use of physically motivated models, coupled with the broad energy range covered by the data (0.6–70 keV and 0.6–40 keV, for NGC 3081 and ESO 565-G019, respectively) allows us to constrain the covering factor of the obscuring material, which is C TOR = [0.63–0.82] for NGC 3081, and C TOR = [0.39–0.65] for ESO 565-G019.


1984 ◽  
Vol 110 ◽  
pp. 251-256
Author(s):  
E. Preuss

This review is an attempt to summarize VLBI continuum observations at cm- and dm-wavelengths of active galactic nuclei at distances ≲ 100 Mpc (Ho = 50 km s−1 Mpc−1). ‘Nearby galaxies’, thus defined, are close enough for achieving the highest possible spatial resolution. Galaxies at these distances, however, typically do not show extreme and rare forms of nuclear activity such as powerful radio sources, the cores of which are relatively easy to map with VLBI, and which are therefore the subject of most of the VLBI work done so far (see e.g. Preuss, 1983). Nearby active galaxies show rather more ‘ordinary’ forms of nuclear activity; they include a few of the weaker classical ‘radio galaxies’, but most of them are Seyfert galaxies and mildly active ‘normal galaxies’. Their total radio emission is typically weak (P(5 GHz) ≲ 1031 erg s−1 Hz−1) and so are their compact radio nuclei (if any). The highest available sensitivity is therefore required for their study and the current instrumental performance is just becoming sufficient to tackle the strongest of them in the hope of obtaining maps.


2020 ◽  
Vol 499 (1) ◽  
pp. 1005-1022
Author(s):  
Christian Wolf ◽  
Jacob Golding ◽  
Wei Jeat Hon ◽  
Christopher A Onken

ABSTRACT We study the utility of broad-band colours in the SkyMapper Southern Survey for selecting Seyfert galaxies at low luminosity. We find that the u − v index, built from the ultraviolet u and violet v filters, separates normal galaxies, starburst galaxies, and type-1 active galactic nuclei (AGNs). This u − v index is not sensitive to age or metallicity in a stellar population but is instead a quenching-and-bursting indicator in galaxies and detects power-law continua in type-1 AGNs. Using over 25 000 galaxies at z < 0.1 from 6dFGS, we find a selection cut based on u − v and central u band brightness that identifies type-1 AGNs. By eyeballing 6dFGS spectra we classify new Seyfert galaxies of type 1 to 1.8. Our sample includes eight known Changing-Look AGNs (CLAGNs), two of which show such strong variability that they move across the selection cut during the 5 yr of SkyMapper observations in DR3, along mixing sequences of nuclear and host galaxy light. We identify 46 CLAGN candidates in our sample, one of which has been reported as a Type IIn supernova. We show that this transient persists for at least 5 yr and marks a flare in a Seyfert-1 period of a new CLAGN.


1982 ◽  
Vol 97 ◽  
pp. 369-371 ◽  
Author(s):  
Donald E. Osterbrock

Many radio galaxies have strong emission lines in their optical spectra. The fraction with such lines is much larger than in “normal” galaxies. Radio galaxies generally also have very bright nuclei; thus those with strong emission lines are similar in both respects to Seyfert galaxies. Hence radio and Seyfert galaxies are both generally considered to be similar physical objects: active galactic nuclei. Their observational properties show they are closely related to quasars (quasi-stellar radio sources) and (radio-quiet) QSOs. A short table of the space density of these objects, culled from many sources, chiefly Schmidt (1978) and Simkim, Su and Schwarz (1980) is given below. Although all the numbers are quite uncertain, there is no doubt that the radio-loud objects are relatively rare. With less certainty, it appears that the ratio of numbers of radio galaxies to Seyfert galaxies is about the same as the ratio of numbers of quasars to QSOs.


1972 ◽  
Vol 14 ◽  
pp. 845-869 ◽  
Author(s):  
Leon Van Speybroeck

The catalog of X-ray sources now includes types I and II super-novae remnants, at least one pulsar, other periodic or quasi-periodic sources, starlike objects which emit primarily in X rays, normal galaxies, radio galaxies, Seyfert galaxies, a quasar, and an apparently isotropic extragalactic background. There is ample evidence that X-ray emission is characteristic of many of the most interesting objects in astronomy, and the background may have cosmological implications. This should not be too surprising, since significant X-ray emission occurs whenever high energy electrons interact, and high energy electron production is usually associated with explosive phenomena.The most useful energy range for X-ray observations extends from about 200 eV to perhaps 10 keV. The low energy limit results from the absorption by the interstellar media, which of course varies from object to object; some typical cutoffs are given in Table I. The high energy limit, which is much more arbitrary, results from the usually observed rapidly decreasing emission with increasing energy, and also from the lack of important characteristic emission or absorption features above this energy range. In many cases, however, observations outside of this energy range are required to definitively identify a dominant source mechanism.


1983 ◽  
Vol 6 ◽  
pp. 531-533
Author(s):  
Geoffrey Burbidge

More than 20 years ago V. A. Ambartsumian proposed that much of the activity in galaxies was dominated and even generated by their nuclei. Subsequent observational work in radio, optical and x-ray frequencies has borne out his prophecy, and major interest has centered about the nature of the machine in the galactic nucleus. The major characteristic of this machine is that it releases energy rapidly and often spasmodically by processes which are not thermonuclear in origin.The original studies which led to the conclusion that nuclei were all important were observations of the powerful radio sources and Seyfert galaxies, and evidence for the ejection of gas from galaxies of many types. The realization that the synchrotron mechanism was the dominant radiation mechanism and the later studies of Compton radiation were fundamental in leading to the conclusion that large fluxes of relativistic particles must be generated in galactic nuclei.


2019 ◽  
Vol 15 (S356) ◽  
pp. 247-251
Author(s):  
Biny Sebastian ◽  
Preeti Kharb ◽  
Christopher P. O’ Dea ◽  
Jack F. Gallimore ◽  
Stefi A. Baum ◽  
...  

AbstractThe role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.


2019 ◽  
Vol 489 (1) ◽  
pp. L12-L16 ◽  
Author(s):  
Sugata Kaviraj ◽  
Garreth Martin ◽  
Joseph Silk

Abstract While active galactic nuclei (AGN) are considered to be key drivers of the evolution of massive galaxies, their potentially significant role in the dwarf-galaxy regime (M* < 109 M⊙) remains largely unexplored. We combine optical and infrared data, from the Hyper Suprime-Cam (HSC) and the Wide-field Infrared Explorer, respectively, to explore the properties of ∼800 AGN in dwarfs at low redshift (z < 0.3). Infrared-selected AGN fractions are ∼10–30 per cent in dwarfs, which, for reasonable duty cycles, indicates a high black hole (BH)-occupation fraction. Visual inspection of the deep HSC images indicates that the merger fraction in dwarf AGN (∼6 per cent) shows no excess compared to a control sample of non-AGN, suggesting that the AGN-triggering processes are secular in nature. Energetic arguments indicate that, in both dwarfs and massive galaxies, bolometric AGN luminosities (LAGN) are significantly greater than supernova luminosities (LSN). LAGN/LSN is, in fact, higher in dwarfs, with predictions from simulations suggesting that this ratio only increases with redshift. Together with the potentially high BH-occupation fraction, this suggests that if AGN feedback is an important driver of massive-galaxy evolution, the same is likely to be true in the dwarf regime, contrary to our classical thinking.


2020 ◽  
Vol 501 (1) ◽  
pp. L54-L59
Author(s):  
R A Riffel ◽  
O L Dors ◽  
M Armah ◽  
T Storchi-Bergmann ◽  
A Feltre ◽  
...  

ABSTRACT We present maps for the electron temperature in the inner kpc of three luminous Seyfert galaxies: Mrk 79, Mrk 348, and Mrk 607 obtained from Gemini Multi-Object Spectrograph-integral field unit observations at spatial resolutions of ∼110–280 pc. We study the distributions of electron temperature in active galaxies and find temperatures varying in the range from ∼8000 to $\gtrsim 30\, 000\,$K. Shocks due to gas outflows play an important role in the observed temperature distributions of Mrk 79 and Mrk 348, while standard photoionization models reproduce the derived temperature values for Mrk 607. In Mrk 79 and Mrk 348, we find direct evidence for shock ionization with overall orientation orthogonal to the ionization axis, where shocks can be easily observed as the active galactic nuclei radiation field is shielded by the nuclear dusty torus. This also indicates that even when the ionization cones are narrow, the shocks can be much wider angle.


Sign in / Sign up

Export Citation Format

Share Document