scholarly journals The Rayleigh-Taylor Instability Overturn of Supernova Cores during Bouncing and Resulting Neutrino Energy Release

1980 ◽  
Vol 5 ◽  
pp. 517-519
Author(s):  
S. A. Colgate ◽  
A. G. Petschek

We show that Rayleigh-Taylor convective overturn of the dynamically formed lepton-trapped core of a supernova is a likely outcome of three sequential events: (1) The bounce or weak reversal shock; (2) the diffusive and convective lepton release from the neutrino-sphere during a fraction of the reversal time (≌ 100 ms); and (3) the rapid (≤ 10 ms) Rayleigh-Taylor growth of the l = 2 mode of an initial rotational perturbation. The overturn releases gravitational energy corresponding to a differential trapped lepton pressure energy of 30 to 50 MeV/nucleon by P dV work in beta equilibrium in a fraction of a millisecond. The resulting kinetic energy of ≌ 7 × 1052 ergs is more than adequate to cause the observed supernova emission. Also, the sudden release of ≌ 7 × 1051 ergs of ˜ 10 MeV neutrinos from the neutrinosphere will cause adequate mass and energy ejection.

1997 ◽  
Vol 15 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Yu.A. Kucherenko ◽  
S.I. Balabin ◽  
R. Cherret ◽  
J.F. Haas

An experimental investigation into inertial properties of the developed Rayleigh–Taylor instability with the different initial values of the kinetic energy of turbulence has been performed. The experiments were performed by using two fluids having different densities with density ration n = 3. Fluids were placed in an ampoule. At the unstable stage of motion, the ampoule was moving under an acceleration. At a certain instant of time the acceleration was removed and the ampoule moved under the force of inertia. By means of pulsed X-ray photography, the mixing region size and the time-space distributionof the average density of matter in the turbulent mixing region have been determined at different instants of time. The time-space distributions are compared with those obtained by semiempirical theories of mixing.


2000 ◽  
Vol 18 (2) ◽  
pp. 175-181 ◽  
Author(s):  
N.N. ANUCHINA ◽  
V.I. VOLKOV ◽  
V.A. GORDEYCHUK ◽  
N.S. ES'KOV ◽  
O.S. IIYUTINA ◽  
...  

A 3D numerical study of the turbulent phase of the evolution of Rayleigh–Taylor instability (RTI) was undertaken using the MAH-3 code. A criterion and a technique have been developed that can be used for diagnostics in computational experiments studying flow transition to self-similar turbulence. It has been found that a criterion of the flow transition to the self-similar turbulence is Kolmogorov's self-similar distribution of the turbulent kinetic energy together with the square law of mixing zone extension. The technique is based on the analysis of the evolution of the dimensionless power spectrum of specific kinetic energy. Three phases of nonlinear mixing are found: “relict chaos”, “formation of classical energy spectrum” and “spectrum degradation.” Determination of a proportionality factor for a square law within the time range incorporating inertial interval gives the value of α ≈ 0.07.


Sign in / Sign up

Export Citation Format

Share Document