Advances in understanding neuron–glia interactions

2005 ◽  
Vol 2 (1) ◽  
pp. 23-26 ◽  
Author(s):  
R. DOUGLAS FIELDS

Recent advances in the field of neuron–glia interactions were presented at the 27th International Symposium of the University of Montreal Center de Recherche en Sciences Neruologiques. Topics included synaptogenesis, regulation of synaptic strength by glia at the neuromuscular junction and hippocampus; myelin formation, structure, and maintenance; involvement of glia in nervous-system response to injury, hypoxia, and ischemia; neurogenesis and apoptosis, and microglial involvement in chronic pain.

2018 ◽  
Author(s):  
Pragya Goel ◽  
Mehak Khan ◽  
Samantha Howard ◽  
Beril Kiragasi ◽  
Koto Kikuma ◽  
...  

ABSTRACTSynapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains remarkably stable throughout life, implying that adaptive countermeasures exist to stabilize neurotransmission. Aberrant synaptic structure and function has been associated with a variety of neural diseases including Fragile X syndrome, autism, and intellectual disability. We have screened disruptions in over 300 genes in Drosophila for defects in synaptic growth at the neuromuscular junction. This effort identified 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed synaptic strength in all but one of these mutants was unchanged compared to wild type. We utilized a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength in the face of alterations in synaptic growth. These include compensatory changes in 1) postsynaptic receptor abundance; 2) presynaptic morphology; and 3) active zone structure. Together, this analysis identifies new genes that regulate synaptic growth and the adaptive strategies that synapses employ to homeostatically stabilize synaptic strength in response.AUTHOR SUMMARYThroughout development, maturation, experience, and disease, synapses undergo dramatic changes in growth and remodeling. Although these processes are necessary for learning and memory, they pose major challenges to stable function in the nervous system. However, neurotransmission is typically constrained within narrow physiological ranges, implying the existence of homeostatic mechanisms that maintain stable functionality despite drastic alterations in synapse number. In this study we investigate the relationship between synaptic growth and function across a variety of mutations in neural and synaptic genes in the fruitfly Drosophila melanogaster. Using the neuromuscular junction as a model system, we reveal three adaptive mechanisms that stabilize synaptic strength when synapses are dramatically under- or over-grown. Together, these findings provide insights into the strategies employed at both pre- and post-synaptic compartments to ensure stable functionality while allowing considerable flexibility in overall synapse number.


2021 ◽  
Vol 22 (3) ◽  
pp. 1448
Author(s):  
Jessica Aijia Liu ◽  
Jing Yu ◽  
Chi Wai Cheung

Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.


2021 ◽  
pp. 096777202110121
Author(s):  
Peter D Mohr ◽  
Stephanie Seville

George Archibald Grant Mitchell, OBE, TD, MB, ChB, ChM, MSc, DSc, FRCS (1906–1993) was a professor of anatomy at the University of Manchester from 1946 to 1973. He is mainly remembered for his research in neuroanatomy, especially of the autonomic nervous system. He studied medicine at the Aberdeen University, and after qualifying in 1929 he held posts in surgery and anatomy and worked as a surgeon in the Highlands. In 1939, he joined the Royal Army Medical Corps. He was based in Egypt and the Middle East, where he carried out trials of sulphonamides and penicillin on wounded soldiers; in 1943, he returned to England as Adviser in Penicillin Therapy for 21 Army Group, preparing for the invasion of Europe.


2019 ◽  
Vol 20 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Marzia Malcangio

AbstractBackgroundAcute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).Critical role for immune system cells in chronic painPreclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.Immune system reactions to peripheral nerve injuriesAt the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX3CR1)-expressing monocytes/macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuro-immune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a pro-inflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.Immune system mechanisms in the central nervous systemIn the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as P2X4/BDNF/GABAA, P2X7/Cathepsin S/Fractalkine/CX3CR1, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.Conclusions and implicationsDefinition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.


Sign in / Sign up

Export Citation Format

Share Document