Influence of cover crops and soil amendments on okra (Abelmoschus esculentus L.) production and soil nematodes

2007 ◽  
Vol 22 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Qingren Wang ◽  
Yuncong Li ◽  
Waldemar Klassen ◽  
Zafar Handoo

AbstractA pot experiment to determine the effects of summer cover crops and soil amendments on okra yields and population densities of various soil nematode taxa was conducted in two consecutive growing seasons in a subtropical region. Two cover crops, sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor×S. bicolor var. sudanense), were grown and returned to the soil with fallow as a control. As soon as these cover crops were harvested, they were soil-incorporated together with one of several organic amendments. These organic amendments were biosolids, N-Viro soil (a 1:1 mixture of coal ash and biosolids), coal ash, co-compost (a 3:7 mixture of biosolids and yard wastes), and yard waste compost compared with a control (no additional amendment). Other treatments were fumigation with MC-33 (a mixture of 33% of methyl bromide and 67% of chloropicrin) and cover crop removal (harvested and removed cover crops and their residues from the soil). A nematode-susceptible vegetable crop, okra (Abelmoschus esculentus L.), was grown under these treatments. Among organic amendments, the application of biosolids produced the highest okra yield and biomass, and greatly suppressed root-knot nematodes, Meloidogyne incognita, in the soil. Between these two cover crops, sunn hemp was superior to sorghum sudangrass in improving okra production and in suppressing root-knot nematodes. The result indicates that growing sunn hemp as a cover crop and applying certain organic amendments can improve okra production and suppress root-knot nematodes, which are very damaging to okra plants. Such combined practices show a significant potential for application in organic farming and sustainable agriculture systems in a tropical or subtropical region.

2006 ◽  
Vol 16 (2) ◽  
pp. 328-338 ◽  
Author(s):  
Qingren Wang ◽  
Yuncong Li ◽  
Waldemar Klassen

A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on `Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash, coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production (i.e., fruit yields were enhanced by 53% to 62% in 2002-03 and by 28% to 70% in 2003-04). Soil amendments enhanced okra fruit yields from 38.3 to 81.0 g/pot vs. 27.4 g/pot in the control in 2002-03, and from 59.9 to 124.3 g/pot vs. 52.3 g/pot in the control in 2003-04. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. Among cover crop treatments, sunn hemp showed promising improvement in concentrations of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), boron (B), and molybdenum (Mo) in fruit; magnesium (Mg), Zn, Cu, and Mo in shoots; and Mo in roots of okra. Among soil amendments, biosolids had a significant influence on most nutrients by increasing the concentrations of Zn, Cu, Fe, and Mo in the fruit; Mg, Zn, Cu, and Mo in the shoot; and Mg, Zn, and Mo in the root. Concentrations of the trace metal cadmium (Cd) were not increased significantly in either okra fruit, shoot, or root by application of these cover crops or soil amendments, but the lead (Pb) concentration was increased in the fruit by application of a high rate (205 g/pot) of biosolids. These results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2125-2131 ◽  
Author(s):  
Qingren Wang ◽  
Waldemar Klassen ◽  
Yuncong Li ◽  
Merlyn Codallo ◽  
Aref A. Abdul-Baki

Intensive rainfall during summer causes substantial nutrient leaching in a subtropical region, where most vegetable lands lay fallow during this period. Also, an excessive amount of irrigation water supplied during the winter vegetable growing season leads to soil nutrient loss, which greatly impacts vegetable yields, especially in soils that possess a low capacity to retain soil water and nutrients. A 2-year field experiment was carried out to evaluate the effects of various summer cover crops and irrigation rates on tomato yields and quality, and on soil fertility in a subtropical region of Florida. The cover crops were sunn hemp [Crotalaria juncea (L.) `Tropic Sun'], cowpea [Vigna unguiculata (L.) Walp, `Iron Clay'], velvetbean [Mucuna deeringiana (Bort.) Merr.], and sorghum sudangrass [Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf.], with a weed-free fallow as a control. The cover crops were planted during late Spring 2001 and 2002, incorporated into the soil in the fall, and tomatoes [Lycopersicon esculentum (Mill.) `Sanibel'] were grown on raised beds during Winter 2001–02 and 2002–03, respectively. Irrigation in various treatments was controlled when tensiometer readings reached –5, –10, –20, or –30 kPa. The cover crops produced from 5.2 to 12.5 Mg·ha–1 of above ground dry biomass and 48 to 356 Mg·ha–1 of N during 2001–02 and from 3.6 to 9.7 Mg·ha–1 of dry biomass and 35 to 277 kg·ha–1 of N during 2002–03. The highest N contribution was made by sunn hemp and the lowest by sorghum sudangrass. Based on 2-year data, tomato marketable yields were increased from 14% to 27% (p ≤ 0.05) by growing cover crops, and the greatest increase occurred in the sunn hemp treatment followed by the cowpea treatment. Irrigation at –10, –20, and –30 kPa significantly improved marketable yields by 14%, 12%, and 25% (p ≤ 0.05) for 2001–02, and 18%, 31%, and 34% (p ≤ 0.05) for 2002–03, respectively, compared to yields at the commonly applied rate, –5 kPa (control). Irrigation at –30 kPa used about 85% less water than at –5 kPa. Yields of extra-large fruit in the sunn hemp and cowpea treatments from the first harvest in both years averaged 12.6 to 15.2 Mg·ha–1, and they were significantly higher than yields in the fallow treatment (10.2 to 11.3 Mg·ha–1). Likewise at –30 kPa yields of extra-large fruit from the first harvest for both years were 13.0 to 15.3 Mg·ha–1 compared to 9.8 to 10.7 Mg·ha–1 at –5 kPa. Soil NO3-N and total N contents in sunn hemp and cowpea treatments were significantly higher than those in fallow. The results indicate that growing legume summer cover crops in a subtropical region, especially sunn hemp and cowpea, and reducing irrigation rates are valuable approaches to conserve soil nutrients and water, and to improve soil fertility and tomato yields and quality.


Nematology ◽  
2008 ◽  
Vol 10 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Koon-Hui Wang ◽  
Nancy Kokalis-Burelle ◽  
Robert McSorley ◽  
Raymond Gallaher

AbstractTraditional cover cropping systems for nematode management seldom consider weed and soil nutrient management concurrently. Integrating cover crops suppressive to plant-parasitic nematodes with a cover crop mulching system could improve traditional approaches. Two field experiments were conducted in 2003 and 2004 to evaluate 'Tropic Sun' sunn hemp (Crotalaria juncea) and 'Iron Clay' cowpea (Vigna unguiculata) as summer cover crops and as organic mulches. Both experiments were in a 3 × 3 split-plot design in which the main plots were summer planting of sunn hemp, cowpea or fallow, and the subplots were organic mulch of sunn hemp, cowpea or no mulch. The summer cover crop was followed by turnip (Brassica rapa) and lima bean (Phaseolus lunatus) in the autumn. Using sunn hemp as organic mulch suppressed root-knot nematodes more effectively than using it as a cover crop, but only on a less susceptible host such as turnip, and not on a very susceptible host such as lima bean. While sunn hemp as a cover crop failed to enhance beneficial free-living nematodes, sunn hemp as an organic mulch enhanced bacterial-feeding nematode population densities. Sunn hemp mulch also suppressed broadleaf weeds but not grasses or nutsedges. Although sunn hemp and cowpea cover crops did not increase lima bean N and K content, their mulches increased N and K content. Similar results were observed for turnip and lima bean yields. Population density of root-knot nematodes was positively related to abundance of omnivorous nematode in 2003. The abundance of plant-parasitic nematodes was negatively related to the infestation levels of Pasteuria penetrans, and the abundance of predatory nematodes in 2004. Factors that might have affected the performance of sunn hemp on nematode communities are discussed.


2021 ◽  
pp. 1-9
Author(s):  
Thierry E. Besançon ◽  
Maggie H. Wasacz ◽  
Joseph R. Heckman

Cover crops included in a crop rotation can help increase nitrogen (N) availability to subsequent crops, raise soil organic matter, and suppress emergence and growth of various weed species. However, weed suppression by cover crops has mostly been investigated shortly after cover crop termination and not over a longer period spanning into the next cropping season. The effects of sunn hemp (Crotalaria juncea) and sorghum-sudangrass (Sorghum ×drummondi) planted the previous year on N availability before transplanting of late summer cabbage (Brassica oleracea), weed germination and growth, and cabbage yield was examined in field studies conducted in 2018 and 2019 at Pittstown, NJ. Results established that there was little evidence for a functional difference in soil N availability for fall cabbage production because of previous cover crop type. Heavy rainfall events both years may have caused major losses of available N that might otherwise be expected to come from N mineralization of residues of legume cover crop like sunn hemp. During the cover crop season, smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) dry biomass was 77% and 82% lower, respectively, in sorghum-sudangrass compared with sunn hemp plots. The subsequent season following sorghum-sudangrass cover crop, dry biomass of broadleaf weeds was lower by 74% and 56% in June and July, respectively, compared with preceding sunn hemp. Smooth pigweed, common lambsquarters, and hairy galinsoga (Galinsoga quadriradiata) were the weed species most consistently affected by preceding sorghum-sudangrass cover crop with biomass decreased by up to 80%, 78%, and 64%, respectively. Thus, it appears that sorghum-sudangrass can provide suppression of some broadleaf species over a relatively long period and is indicative of sorghum-sudangrass allelopathic activity. On the contrary, density and biomass of grassy weeds as well as commercial yield of transplanted cabbage were unaffected by the preceding cover crop. These results suggest that sorghum-sudangrass cover crop could be integrated to transplanted cole crop rotation for providing weed suppression benefits without altering crop yield in New Jersey organic vegetable cropping systems.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Robert L. Meagher ◽  
Rodney N. Nagoshi ◽  
Shelby J. Fleischer ◽  
John K. Westbrook ◽  
David L. Wright ◽  
...  

Abstract Background Fall armyworm, Spodoptera frugiperda (J. E. Smith) is a migratory moth that annually migrates northward each spring from sites in southern Florida and southern Texas. This caterpillar pest feeds on and damages row, turf and vegetable crops in the eastern and central U.S. Before migrating in spring, it feeds on cover crops in central and eastern Florida and expands its populations. Our objective was to use multi-year studies to compare fall armyworm populations that develop in cover crop plants. Methods A series of field experiments and a laboratory feeding study were conducted to compare infestation and feeding and of fall armyworm on different cover crop plants. Field experiments had plots planted with corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], a standard cover crop in Florida, and two alternative cover crops, sunn hemp (Crotalaria juncea L.) and cowpea [Vigna unguiculata (L.) Walpers spp. unguiculata]. Another trial compared populations in sorghum-sudangrass and in mixtures of sorghum-sudangrass with buckwheat (Fagopyrum esculentum Moench) or pearl millet (Cenchrus americanus (L.) Morrone). Fall armyworm larvae were fed and allowed to develop on different sunn hemp germplasm in a laboratory trial. Results Field populations of fall armyworm were highest on corn, followed by sorghum-sudangrass. Sunn hemp and cowpea had larval populations 70–96% less than on sorghum-sudangrass, suggesting replacement of this cover crop with either plant species might help reduce areawide populations of resident or migratory fall armyworm. Larvae collected from cover crop plots had parasitism levels that averaged 30%, with Chelonus insularis (Hymenoptera: Braconidae) emerging as the most commonly-collected species. Larval feeding on different sunn hemp germplasm lines resulted in no difference in weight gain. Conclusions Replacing sorghum-sudangrass with sunn hemp varieties or germplasm should be acceptable as a replacement cover crop for areawide management of fall armyworm.


Nematology ◽  
2021 ◽  
pp. 1-9
Author(s):  
Hung X. Bui ◽  
Johan A. Desaeger

Summary Cover crops can be a useful tool for managing plant-parasitic nematodes provided they are poor or non-hosts for the target nematode species. A glasshouse experiment was done to determine the host status of four common cover crops in Florida, sunn hemp, cowpea, sorghum sudangrass and sunflower, to pure populations of four common tropical root-knot nematode (RKN) species Meloidogyne javanica (Mj), M. incognita (Mi), M. enterolobii (Me) and M. arenaria (Ma). Tomato was included as a susceptible control. Eight weeks after nematode inoculation (WAI), tomato showed the highest root gall damage for all tested RKN species, with gall indices (GI) between 7 (Ma) and 8.5 (Me) and reproduction factor (RF) ranging from 20 (Ma) to 50 (Mj). No visible root galls were observed for any of the RKN species on sunn hemp and sorghum sudangrass at 8 WAI. However, Mj and Mi were able to reproduce slightly on sorghum sudangrass (RF = 0.02 and 0.79, respectively). Sunflower and cowpea were infected by all four tested RKN species, but host suitability varied. Sunflower root galling ranged from 1.1 (Me) to 4.5 (Mj) and RF = 3.2 (Me) to 28.7 (Mj), while cowpea root galling ranged from 0.6 (Mi) to 5.1 (Me) and RF = 0.8 (Mi) to 67.3 (Mj). Sunn hemp and, to a lesser extent, sorghum sudangrass were poor hosts to all four tested RKN species. Sunflower was a good host to all RKN species, but root gall damage and RF were lowest for Me. Cowpea was a good host to Mj, Me and Ma, but a poor host to Mi. Our results confirm and stress the importance of RKN species identification when selecting cover crops as an RKN management strategy.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Amanda S. Collins ◽  
Carlene A. Chase ◽  
William M. Stall ◽  
Chad M. Hutchinson

Additive experiments were performed to determine optimum densities for nematode-suppressive cover crops to extend the benefit from the cover crops by also using them for weed suppression. In a preliminary experiment in 2002, a range of cover-crop densities was evaluated in mixtures with smooth pigweed at 5 plants m−2. Smooth pigweed biomass accumulation was suppressed by cowpea, sunn hemp, and velvetbean at the lowest cover-crop populations (38, 44, and 15 plants m−2, respectively). Based on these results, experiments were conducted in 2003 at two locations to examine the effects of lower cover-crop densities on a higher smooth pigweed population density of 15 plants m−2. Cowpea and velvetbean densities ranged from 10 to 50 plants m−2 and sunn hemp from 20 to 100 plants m−2. In 2003, cowpea density had no effect on smooth pigweed biomass. However, smooth pigweed biomass declined linearly by 51% as sunn hemp density increased to 100 plants m−2. Similarly, as velvetbean densities increased, smooth pigweed biomass decreased showing a linear response at one location and quadratic response at the second location. Maximum suppression of smooth pigweed biomass by velvetbean occurred at the highest cover-crop density (50 plants m−2). Excellent suppression of smooth pigweed at 5 plants m−2 or fewer will result in densities of 38, 44, and 15 plants m−2 of cowpea, sunn hemp, and velvetbean. However, with smooth pigweed at 15 plants m−2, optimum cover-crop densities were not obtained because no suppression was obtained with cowpea, and the lowest weed biomass with sunn hemp and velvetbean occurred with the highest densities used. Therefore, when high smooth pigweed densities are expected, sunn hemp and velvetbean should be used at densities greater than 100 and 50 plants m−2, respectively, and further study with higher densities will be needed to define optima.


2005 ◽  
Vol 82 (1) ◽  
pp. 13-23 ◽  
Author(s):  
A.W. McKeown ◽  
J.W.. Potter

Studies were conducted at Simcoe, Ontario from 1992 to 1996 to evaluate various cover crop species as possible alternatives to fumigation prior to potatoes (Solanum tuberosum). Cereal rye (Secale cereale), a common overwinter cover crop in vegetable production systems, is an excellent host for the root-lesion nematode (Pratylenchus penetrans) and provides a suitable overwintering host on coarse sandy soils. Vorlex Plus CP and Telone IIB fumigants were compared to 'Domo' mustard (Brassica juncea) for the 1993 and 1994 potato crop years. Rye plus red clover (Trifolium pratense) was included as a known host cover crop system. Cyanogenic plants including 'Domo' mustard (1994) or 'Cutlass' mustard (1995, 1996), 'Forge' canola (Brassica rapa), 'Sordan 79' and 'Trudan 8' sorghum-sudangrass hybrids (Sorghum bicolor), and flax (Linum usitatissimum) were compared to Vorlex Plus CP fumigant and 'NK557' sorghum (Sorghum vulgare) for effects on potato yield and nematodes. Shallow (15 cm) and deep (45 cm) fumigation with Vorlex Plus CP were also compared prior to potatoes for the 1994 to 1996 crop years. There was little detectable difference in percent or days to 50% emergence of potatoes following any treatment. Highest total and marketable yields resulted from Telone IIB fumigation, then Vorlex Plus CP fumigation and 'Domo' mustard, followed by control and rye plus red clover cover. Populations of nematodes surpassed the threshold of 1000 kg-1 soil in all treatments and were highest in potatoes following rye plus red clover. Yield and nematode control following sorghum-sudangrass hybrids and mustards appeared to be intermediate between fumigated and not fumigated. All of the cover crops appeared to be root-lesion nematode hosts in the field, and reduction of population levels appeared to result after incorporation or nematode winterkill. Nematode mortality was excellent with fumigation and next best from kill over the winter after 'Sordan 79' incorporation. 'Sordan 79' grown over at least part of the summer followed by incorporation was an alternative to fumigation prior to potatoes. Deep chiselling appears to reduce nematode population, possibly by physical action. Where nematode populations warrant, deep fumigation prior to potatoes appears to be of merit.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Michael J. Adler ◽  
Carlene A. Chase

The phytotoxicity of aqueous foliar extracts and ground dried residues of sunn hemp (Crotalaria juncea L.), cowpea [Vigna unguiculata (L.) Walp. cv. Iron Clay], and velvetbean [Mucuna deeringiana (Bort) Merr.] to crop and weed germination and growth was evaluated to compare the allelopathic potential of the cover crops. By 14 days after treatment (DAT), goosegrass [Eleusine indica (L.) Gaertn.] germination with 5% aqueous extracts of all cover crops (w/v fresh weight basis) was similar and greater than 75% of control. However, with the 10% extracts, goosegrass germination was lowest with cowpea extract, intermediate with velvetbean extract, and highest with sunn hemp extract. Livid amaranth (Amaranthus lividus L.) germination declined to ≈50% with cowpea and sunn hemp extracts and even lower to 22% with velvetbean extract. The suppression of livid amaranth germination was greater with the 10% extracts than the 5% extracts. Bell pepper (Capsicum annuum L.) germination was unaffected by velvetbean extract, inhibited more by the 5% cowpea extract than the 10% extract, and was also sensitive to the 10% sunn hemp extract. All cover crop extracts resulted in an initial delay in tomato (Lycopersicon esculentum Mill.) germination, but by 14 DAT, inhibition of germination was apparent only with cowpea extract. The phytotoxicity of ground dried residues of the three cover crops on germination, plant height, and dry weight of goosegrass, smooth amaranth (A. hybridus L.), bell pepper, and tomato was evaluated in greenhouse studies. Goosegrass germination was inhibited in a similar manner by residues of the three cover crops to 80% or less of control. Smooth amaranth germination, plant height, and dry biomass were more sensitive to sunn hemp residues than to cowpea and velvetbean residues. Bell pepper germination, plant height, and dry weight were greater than 90% of control except for dry weight with cowpea residue, which was only 78% of control. The greatest effect of cover crop residue on tomato occurred with dry weight, because dry weights with cowpea and sunn hemp were only 76% and 69% of control, respectively, and lower than with velvetbean. There was more evidence of cover crop phytotoxicity with the weed species than with the crop species and cowpea extracts and residue affected all species more consistently than those of sunn hemp and velvetbean.


Sign in / Sign up

Export Citation Format

Share Document