scholarly journals The enigmatic loop III and the Local Galactic Structure

2006 ◽  
Vol 2 (S237) ◽  
pp. 119-123 ◽  
Author(s):  
M. Kun

AbstractThe aim of the present study, based on literature data, is to find signatures of the giant radio continuum structure Loop III on the nearby interstellar medium, and search for molecular cloud and star formation, possibly triggered by its expansion. The preliminary results are as follows: (1) The 3D map of the Local Bubble, published by Lallement et al. (2003) suggests that Loop III is probably more distant than the early models had indicated. (2) The molecular clouds at high galactic latitudes in the 2nd Galactic quadrant are probably associated with the neutral/molecular wall of Loop III. (3) Star formation in Lynds 1333 and Lynds 1082 (GF 9) might have been triggered by the expansion of Loop III. (4) The supernova(e), whose explosion produced Loop III, might have been located in the SU Cas association.

2016 ◽  
Vol 11 (S322) ◽  
pp. 133-136
Author(s):  
N. Butterfield ◽  
C.C. Lang ◽  
E. A. C. Mills ◽  
D. Ludovici ◽  
J. Ott ◽  
...  

AbstractWe present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.


2008 ◽  
Vol 4 (S251) ◽  
pp. 47-48 ◽  
Author(s):  
C. Knez ◽  
M. Moore ◽  
S. Travis ◽  
R. Ferrante ◽  
J. Chiar ◽  
...  

AbstractWe present 5–20 μm Spitzer/IRS spectroscopy toward stars behind dark molecular clouds. We present preliminary results from the Serpens dark cloud to show the variation between environments within a cloud. We are surveying 3 clouds with varying levels of star formation activity. Serpens has the highest level of activity from our 3 clouds. We show that location as well extinction can cause variations in ice composition. We also find that some lines of sight contain organic molecules such as methane and methanol, and the first detection of acetylene ice in the interstellar medium. We believe the high extinction lines of sight have been enriched by star formation activity near those lines of sight.


2008 ◽  
Vol 4 (S258) ◽  
pp. 123-132
Author(s):  
David Fernández ◽  
Francesca Figueras ◽  
Jordi Torra

AbstractOver the last decade, several groups of young (mainly low-mass) stars have been discovered in the solar neighbourhood (closer than ~100pc), thanks to cross-correlation between X-ray, optical spectroscopy and kinematic data. These young local associations – including an important fraction whose members are Hipparcos stars – offer insights into the star formation process in low-density environments, shed light on the substellar domain, and could have played an important role in the recent history of the local interstellar medium. Ages estimates for these associations have been derived in the literature by several ways (HR diagram, spectra, Li and Hα widths, expansion motion, etc.). In this work we have studied the kinematic evolution of young local associations and their relation to other young stellar groups and structures in the local interstellar medium, thus casting new light on recent star formation processes in the solar neighbourhood. We compiled the data published in the literature for young local associations, including the astrometric data from the new Hipparcos reduction. Using a realistic Galactic potential we integrated the orbits for these associations and the Sco-Cen complex back in time. Combining these data with the spatial structure of the Local Bubble and the spiral structure of the Galaxy, we propose a recent history of star formation in the solar neighbourhood. We suggest that both the Sco-Cen complex and young local associations originated as a result of the impact of the inner spiral arm shock wave against a giant molecular cloud. The core of the giant molecular cloud formed the Sco-Cen complex, and some small cloudlets in a halo around the giant molecular cloud formed young local associations several million years later. We also propose a supernova in young local associations a few million years ago as the most likely candidate to have reheated the Local Bubble to its present temperature.


1995 ◽  
Vol 12 (2) ◽  
pp. 186-189 ◽  
Author(s):  
A. J. Walsh ◽  
A. R. Hyland ◽  
G. Robinson ◽  
T. L. Bourke ◽  
S. D. James

AbstractUltracompact H II regions are small, dense regions of ionised gas surrounding high-mass stars which are still embedded in their natal molecular clouds. A survey of such regions has been commenced in an attempt to improve our understanding of the processes of high-mass star formation. The initial stages of the survey have involved selection of likely candidates from the IRAS Point Source Catalogue, correlation with radio continuum emission at 4·85 GHz and subsequent observations of methanol maser emission at 6·668 GHz. Preliminary results of the methanol maser survey are given.


1994 ◽  
Vol 217 (1-2) ◽  
pp. 227-230
Author(s):  
Karen M. Strom ◽  
Lennart Nordh ◽  
Eli Dwek

1991 ◽  
Vol 147 ◽  
pp. 379-386
Author(s):  
A. E. Glassgold

This Symposium on fragmentation and star formation has dealt with the heart of the study of molecular clouds, which is how they form stars. This problem is one of the most profound and challenging problems in all of astrophysics. The complexity of the interstellar medium adds to its difficulty and we cannot expect a quick and easy solution. Nonetheless, the reports presented at this Symposium indicate that substantial progress is being made in this field.


1998 ◽  
Vol 179 ◽  
pp. 165-171 ◽  
Author(s):  
Y. Fukui ◽  
Y. Yonekura

We review observational results concerning star formation and dense molecular clouds, the interstellar medium most relevant to star-formation process, as well as future prospects.


Author(s):  
Katsuhiro Hayashi ◽  
Satoshi Yoshiike ◽  
Rei Enokiya ◽  
Shinji Fujita ◽  
Rin Yamada ◽  
...  

Abstract We report on a study of the high-mass star formation in the H ii region W 28 A2 by investigating the molecular clouds that extend over ∼5–10 pc from the exciting stars using the 12CO and 13CO (J = 1–0) and 12CO (J = 2–1) data taken by NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with CO intensity peaks at VLSR ∼ −4 km s−1, 9 km s−1, and 16 km s−1. The highest CO intensity is detected at VLSR ∼ 9 km s−1, where the high-mass stars with spectral types O6.5–B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 μm infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J = 2–1 to 1–0 intensity ratio shows a high value (≳0.8) toward the exciting sources for the −4 km s−1 and +9 km s−1 clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (VLSR ∼ 9 km s−1) decreases to ∼0.6, suggesting self absorption by the dense gas in the near side of the +9 km s−1 cloud. We found partly complementary gas distributions between the −4 km s−1 and +9 km s−1 clouds, and the −4 km s−1 and +16 km s−1 clouds. The exciting sources are located toward the overlapping region in the −4 km s−1 and +9 km s−1 clouds. Similar gas properties are found in the Galactic massive star clusters RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss the possibility of the formation of high-mass stars in the W 28 A2 region being triggered by cloud–cloud collision.


2018 ◽  
Vol 14 (A30) ◽  
pp. 118-118
Author(s):  
Fatemeh S. Tabatabaei ◽  
M. Almudena Prieto ◽  
Juan A. Fernández-Ontiveros

AbstractThe role of the magnetic fields in the formation and quenching of stars with different mass is unknown. We studied the energy balance and the star formation efficiency in a sample of molecular clouds in the central kpc region of NGC 1097, known to be highly magnetized. Combining the full polarization VLA/radio continuum observations with the HST/Hα, Paα and the SMA/CO lines observations, we separated the thermal and non-thermal synchrotron emission and compared the magnetic, turbulent, and thermal pressures. Most of the molecular clouds are magnetically supported against gravitational collapse needed to form cores of massive stars. The massive star formation efficiency of the clouds also drops with the magnetic field strength, while it is uncorrelated with turbulence (Tabatabaei et al. 2018). The inefficiency of the massive star formation and the low-mass stellar population in the center of NGC 1097 can be explained in the following steps: I) Magnetic fields supporting the molecular clouds prevent the collapse of gas to densities needed to form massive stars. II) These clouds can then be fragmented into smaller pieces due to e.g., stellar feedback, non-linear perturbations and instabilities leading to local, small-scale diffusion of the magnetic fields. III) Self-gravity overcomes and the smaller clouds seed the cores of the low-mass stars.


1989 ◽  
Vol 120 ◽  
pp. 518-523
Author(s):  
Jan Palouš

AbstractThe evolution of large scale expanding structures in differentially rotating disks is studied. High column densities in some places may eventually lead to molecular cloud formation and initiate also star-formation. After some time, multi-structured arms evolve, where regions of intensive star-formation are separated from each other by regions of atomic gas or molecular clouds. This is due to the deterministic nature and to the coherence of this process. A simple model of galactic evolution is introduced and the different behaviour of Sa, Sb, and Sc galaxies is shown.


Sign in / Sign up

Export Citation Format

Share Document