scholarly journals Long-term photometry of blazars at Abastumani Observatory

2006 ◽  
Vol 2 (S238) ◽  
pp. 397-398
Author(s):  
Omar M. Kurtanidze ◽  
Maria G. Nikolashvili ◽  
Givi N. Kimeridze ◽  
Lorand A. Sigua ◽  
Bidzina Z. Kapanadze ◽  
...  

AbstractWe give a brief summary of the ongoing Abastumani Active Galactic Nuclei Monitoring Program started in the May 1997. More than 110000 frames are obtained during more than 1300 nights of observations for about 50 target objects, among them gamma-ray, X-ray and optical blazars. All observations were done in the BVRI bands using ST-6 CCD based photometer attached to the Newtonian focus of 70-cm meniscus telescope.

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2016 ◽  
Vol 12 (S324) ◽  
pp. 168-171 ◽  
Author(s):  
S. Komossa ◽  
D. Grupe ◽  
N. Schartel ◽  
L. Gallo ◽  
J. L. Gomez ◽  
...  

AbstractWe present results from our ongoing monitoring programs aimed at identifying and understanding Active Galactic Nuclei (AGN) in extreme flux and spectral states. Observations of AGN in extreme states can reveal the nature of the inner accretion flow, the physics of matter under strong gravity, and they provide insight on the properties of ionized absorbers and outflows launched near supermassive black holes (SMBHs). We present new results from our long-term monitoring of IC 3599, WPVS007, and Mrk 335, multi-wavelength follow-ups of the newly identified changing-look AGN HE 1136–2304, and UV–X-ray follow-ups of the binary SMBH candidate OJ 287 after its 2015 optical maximum, now in a new optical-X-ray–high-state.


1983 ◽  
Vol 104 ◽  
pp. 345-346
Author(s):  
M. Kafatos ◽  
Jean A. Eilek

The origin of the high energy (X-ray and gamma-ray) background may be attributed to discrete sources, which are usually thought to be active galactic nuclei (AGN) (cf. Rothschild et al. 1982, Bignami et al. 1979). At X-rays a lot of information has been obtained with HEAO-1 in the spectral range 2–165 keV. At gamma-rays the background has been estimated from the Apollo 15 and 16 (Trombka et al. 1977) and SAS-2 (Bignami et al. 1979) observations. A summary of some of the observations (Rothschild et al. 1982) is shown in Figure 1. The contribution of AGN to the diffuse high energy background is uncertain at X-rays although it is generally estimated to be in the 20–30% range (Rothschild et al. 1982). At gamma-rays, in the range 1–150 MeV, AGN (specifically Seyfert galaxies) could account for all the emission.


2013 ◽  
Vol 9 (S304) ◽  
pp. 399-402
Author(s):  
Josefa Masegosa ◽  
Lorena Hernández-García ◽  
Isabel Márquez ◽  
Omaira González-Martín

AbstractOne of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM–Newton public archives were used to compile X-ray spectra of LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We found that long term spectral variability is very common, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source.


1983 ◽  
Vol 6 ◽  
pp. 505-510
Author(s):  
M. Kafatos

Gamma-ray observations from active galactic nuclei (AGN) are important in trying to understand the nature of their central sources. A handful of mechanisms can give rise to γ-rays either from nonthermal or from thermal processes. Hot accretion disks around massive black holes in the centers of AGN could provide the required thermal electrons, pions and relativistic electrons and positrons to explain both the X-ray and γ-ray emission.


2010 ◽  
Vol 19 (06) ◽  
pp. 849-857
Author(s):  
MATTHIAS BEILICKE

The giant radio galaxy M 87 is located 16.7 Mpc away and harbours a supermassive black hole in its center. Structures of its relativistic plasma jet are resolved at radio, optical and X–ray energies. M 87 belongs to the class of active galactic nuclei and is one of only a few radio galaxies detected at very-high energies (E > 100 GeV ). This makes it a unique laboratory to study jet physics and the corresponding emission processes. The results obtained from TeV gamma-ray observations during the last decade are discussed.


2017 ◽  
Vol 470 (1) ◽  
pp. 512-516 ◽  
Author(s):  
Roman A. Krivonos ◽  
Sergey S. Tsygankov ◽  
Ilya A. Mereminskiy ◽  
Alexander A. Lutovinov ◽  
Sergey Yu. Sazonov ◽  
...  

Abstract The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) continues to successfully work in orbit after its launch in 2002. The mission provides the deepest ever survey of hard X-ray sources throughout the Galaxy at energies above 20 keV. We report on a catalogue of new hard X-ray source candidates based on the latest sky maps comprising 14 yr of data acquired with the IBIS telescope onboard INTEGRAL in the Galactic Plane (|b| < 17.5°). The current catalogue includes in total 72 hard X-ray sources detected at S/N > 4.7σ and not known to previous INTEGRAL surveys. Among them, 31 objects have also been detected in the on-going all-sky survey by the BAT telescope of the Swift observatory. For 26 sources on the list, we suggest possible identifications: 21 active galactic nuclei, two cataclysmic variables, two isolated pulsars or pulsar wind nebulae and one supernova remnant; 46 sources from the catalogue remain unclassified.


Sign in / Sign up

Export Citation Format

Share Document