scholarly journals Joint Discussion 7 The Universe at zz>6

2006 ◽  
Vol 2 (14) ◽  
pp. 245-245
Author(s):  
Daniel Schaerer ◽  
Andrea Ferrara (eds)

The exploration of the earliest phase of star and galaxy formation after the Big Bang remains an important challenge of contemporary astrophysics and represents a key science driver for numerous future facilities. During this phase the first stars and galaxies appear and start to light up and ionize the then neutral Universe ending thereby the so called cosmic dark ages and leading progressively to the complete reionization we observe now at redshift z≃6 or earlier.

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter considers the emergence of the complex chemical and radiative processes during the first stages of galaxy formation. It studies the appearance of the first stars, their feedback processes, and the resulting ionization structures that emerged during and shortly after the cosmic dawn. The formation of the first stars tens or hundreds of millions of years after the Big Bang had marked a crucial transition in the early Universe. Before this point, the Universe was elegantly described by a small number of parameters. But as soon as the first stars formed, more complex processes entered the scene. To illustrate this, the chapter provides a brief outline of the prevailing (though observationally untested) theory for this cosmological phase transition.


2012 ◽  
Vol 11 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Marcelo Gleiser

AbstractThe history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.


2021 ◽  
pp. 47-75
Author(s):  
Raymond T. Pierrehumbert

‘What are planets made of?’ assesses what planets are made of, beginning by looking at the life cycle of stars, and the kinds of stars which populate the Universe. Although the first stars of the Universe could not have formed planetary systems, the process did not take long to get under way. The Milky Way galaxy formed not long after the Big Bang and has been building its stock of heavy elements ever since. Thus, our Solar System incorporates ingredients from a mix of myriad expired stars, most of which have been processed multiple times through short-lived stars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 808-811
Author(s):  
Pascal A. Oesch

AbstractUnderstanding when and how the first galaxies formed and what sources reionized the universe are key goals of extragalactic astronomy. Thanks to deep surveys with the powerful WFC3/IR camera on the HST, the observational frontier of galaxy build-up now lies at only ~450 Myr after the Big Bang, at redshifts z ~10-12. In combination with deep data from Spitzer/IRAC we can now probe the evolution of the stellar mass density over 96% of cosmic history. However, detecting and characterizing galaxies at these early epochs is challenging even for HST and the sample sizes at the earliest redshifts are still very small. The Hubble Frontier Fields provide a prime new dataset to improve upon our current, sparse sampling of the UV luminosity function at z>8 from blank fields to answer some of the most pressing open questions. For instance, even the evolution of the cosmic star-formation rate density at z>8 is still debated. While our measurements based on blank field data indicate that galaxies with SFR>0.7 Msol/yr disappear quickly from the cosmic record between z~8 and z~10, other previous results, e.g., from the CLASH survey favor a more moderate decline. Here, we briefly review the recent progress in studying galaxy build-up out to z~10 from the combined blank field and existing Frontier Field datasets and discuss their implications for primordial galaxy formation and cosmic reionization.


Author(s):  
Max Pettini

Astronomers now have at their disposal telescopes and instruments that allow them to look back in time over most of the history of the Universe, from the present epoch to less than a billion years after the Big Bang, when the Universe was still in its infancy. Using quasars (the bright nuclei of distant galaxies) as background sources of light, we can follow the evolution of galaxies and of the matter between them from the First Stars to the rich diversity of the Universe today. In this article, I focus on recent developments in the study of the most metal-poor gas seen in the spectra of quasars, whose properties can be used to infer the nature of the First Stars and, in some cases, even determine the universal fraction of baryons.


1987 ◽  
Vol 117 ◽  
pp. 395-409
Author(s):  
Martin J. Rees

There still seem to be three serious contenders for the dark matter in galactic halos and groups of galaxies: (i) very low mass stars, (ii) black hole remnants of very massive stars or (iii) some species of particle (e.g. axions, photinos, etc.) surviving from the big bang. There are genuine prospects of detecting individual objects in all three of these categories, and thereby narrowing down the present range of options. If the Universe has the critical density (Ω = 1), rather than the lower value (Ω = 0.1–0.2) inferred from dynamical evidence, then the galaxies must be more clustered than the overall distribution even on scales 10–20 Mpc. “Biased” galaxy formation could account for this.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

This chapter is about the large-scale structure of the universe, how it is described in general relativity and recent advances in determining the cosmological parameters. The Hubble distance–redshift relationship is discussed. The assumptions of the FRW cosmologies are presented and the FRW solutions of Einstein equation are derived. The FRW model is interpreted in terms of Newtonian gravity. Cosmological redshift is explained. The evidence for dark matter and its possible origin are discussed. The evidence for the Big Bang is presented, including the cosmic microwave background and the latest measurements of the CMB by the Planck probe. The evidence for dark energy is discussed, along with its interpretation as an FRW cosmology with a non-zero cosmological constant. Computer models of galaxy formation are discussed. Outstanding cosmological puzzles are presented along with their possible solution by inflationary models.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter shows that, after cosmological recombination, the Universe had entered the “dark ages,” during which the relic cosmic microwave background (CMB) light from the Big Bang gradually faded away. During this “pregnancy” period (which lasted hundreds of millions of years), the seeds of small density fluctuations planted by inflation in the matter distribution grew until they eventually collapsed to make the first galaxies. In addition to the density evolution, the second key “initial condition” for galaxy formation is the temperature of the hydrogen and helium gas that had likewise collapsed into the first galaxies. Here, the chapter describes the first stages of these processes and introduces the methods conventionally used to describe the fluctuations. It follows the evolution of structure in the linear regime, when the perturbations are small.


2002 ◽  
Vol 10 (2) ◽  
pp. 237-248 ◽  
Author(s):  
GISELLA CLEMENTINI ◽  
RAFFAELE GRATTON

The Big Bang created primordial material from which the first stars formed. These stars exploded as supernovae and polluted the material from which subsequent generations of stars were made. Astronomers have had difficulty in finding stars made of the pure Big Bang material, but they have found stars with very little polluting material. The age of these cosmological relics of the first eras sets a lower limit for the age of the Universe we live in. European astronomers and their colleagues worldwide have joined in the effort to discover and date these, the oldest stars, and cast a glance into the obscure phases between the very first seconds of the existence of the Universe and the epoch at which galaxies and clusters of stars matured. Many independent techniques have been devised to date the oldest stars and stellar systems in the Universe. Some of them are briefly reviewed. The age of the oldest stars is now converging on a value in the range from 12 to 15 thousand million years. However, a large uncertainty still exists and a value as a large as 17 to18 thousand million years cannot be totally ruled out. Such a large value would be difficult to reconcile with the age of the Universe based on cosmological data. Significant improvements in the uncertainties of this situation are expected from the 8–1 m telescopes and space missions of the next decade.


Author(s):  
Joseph Silk

The lunar surface allows a unique way forward in cosmology, to go beyond current limits. The far side provides an unexcelled radio-quiet environment for probing the dark ages via 21 cm interferometry to seek elusive clues on the nature of the infinitesimal fluctuations that seeded galaxy formation. Far-infrared telescopes in cold and dark lunar polar craters will probe back to the first months of the Big Bang and study associated spectral distortions in the CMB. Optical and IR megatelescopes will image the first star clusters in the Universe and seek biosignatures in the atmospheres of unprecedented numbers of nearby habitable zone exoplanets. The goals are compelling and a stable lunar platform will enable construction of telescopes that can access trillions of modes in the sky, providing the key to exploration of our cosmic origins. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


Sign in / Sign up

Export Citation Format

Share Document