scholarly journals Microarcsecond astrometry in the Local Group

2007 ◽  
Vol 3 (S248) ◽  
pp. 474-480
Author(s):  
A. Brunthaler ◽  
M. J. Reid ◽  
H. Falcke ◽  
C. Henkel ◽  
K. M. Menten

AbstractMeasuring the proper motions and geometric distances of galaxies within the Local Group is very important for our understanding of its history, present state and future. Currently, proper motion measurements using optical methods are limited only to the closest companions of the Milky Way. However, given that VLBI provides the best angular resolution in astronomy and phase-referencing techniques yield astrometric accuracies of ≈ 10 micro-arcseconds, measurements of proper motions and angular rotation rates of galaxies out to a distance of ~ 1 Mpc are feasible. This paper presents results of VLBI observations in regions of H2O maser activity of the Local Group galaxies M33 and IC 10. Two masing regions in M33 are on opposite sides of the galaxy. This allows a comparison of the angular rotation rate (as measured by the VLBI observations) with the known inclination and rotation speed of the Hi gas disk leading to a determination of a geometric distance of 730 ± 100 ± 135 kpc. The first error indicates the statistical error of the proper-motion measurements, while the second error is the systematic error of the rotation model. Within the errors, this distance is consistent with the most recent Cepheid distance to M33. Since all position measurements were made relative to an extragalactic background source, the proper motion of M33 has also been measured. This provides a three dimensional velocity vector of M33, showing that this galaxy is moving with a velocity of 190 ± 59 km s−1 relative to the Milky Way. For IC 10, we obtain a motion of 215 ± 42 km s−1 relative to the Milky Way. These measurements promise a new handle on dynamical models for the Local Group and the mass and dark matter halo of Andromeda and the Milky Way.

2017 ◽  
Vol 13 (S336) ◽  
pp. 113-116
Author(s):  
Ylva M. Pihlström ◽  
Loránt O. Sjouwerman

AbstractIs M31 going to collide with the Milky Way, or spiral around it? Determining the gravitational potential in the Local Group has been a challenge since it requires 3D space velocities and orbits of the members, and most objects have only had line-of-sight velocities measured. Compared to the less massive group members, the transverse velocity of M31 is of great interest, as after the Milky Way, M31 is the most dominant constituent and dynamic force in the Local Group. Proper motion studies of M31 are preferentially done using masers, as continuum sources are much weaker, and are enabled through the high angular resolution provided by VLBI in the radio regime. The challenges of achieving high astrometric accuracy at high VLBI frequencies (> 20 GHz) makes observations at lower frequencies attractive, as long as sufficient angular resolution is obtained. In particular, we have discovered 6.7 GHz methanol masers in M31 using the VLA, and here we will address their feasibility as VLBI proper motion targets using a set of global VLBI observations.


1970 ◽  
Vol 7 ◽  
pp. 5-25
Author(s):  
James Newcomb

The discovery and measurement of stellar proper motions has always been associated with machines: for proper motion measurements involve four activities: observation, recording, comparison and measurement. Participation by the astronomer in these activities has step by step been replaced partically or wholly by machines. First the observation and recording functions changed from visual to photographic – with the fine guiding done by the astronomer; then the comparison by the blink microscope and the measurement by visually operated measuring machines. On a comparative time scale, the next step – automation of the comparison and measurement function – has been much money, time, and effort away from the previous steps, but as this presentation and other presentations at this conference will show, machines of varying degrees of automation and astronomer participation are now in operation.


1990 ◽  
Vol 141 ◽  
pp. 407-417
Author(s):  
A. R. Klemola

The Lick proper motion program, one of several using galaxies as a reference frame, is summarized with a statement of work accomplished for the non-Milky Way sky. The problem of identifying relatively transparent regions at low galactic latitudes is discussed, with tabular results presented for 41 windows from the literature having observable galaxies. These fields may be helpful for attaching stellar proper motions directly to the extragalactic frame.


2017 ◽  
Vol 12 (S330) ◽  
pp. 210-213
Author(s):  
Tobias K. Fritz ◽  
Sean T. Linden ◽  
Paul Zivick ◽  
Nitya Kallivayalil ◽  
Jo Bovy

AbstractWe present our effort to measure the proper motions of satellites in the halo of the Milky Way with mainly ground based telescopes as a precursor on what is possible with Gaia. For our first study, we used wide field optical data from the LBT combined with a first epoch of SDSS observations, on the globular cluster Palomar 5 (Pal 5). Since Pal 5 is associated with a tidal stream it is very useful to constrain the shape of the potential of the Milky Way. The motion and other properties of the Pal 5 system constrain the inner halo of the Milky Way to be rather spherical. Further, we combined adaptive optics and HST to get an absolute proper motion of the globular cluster Pyxis. Using the proper motion and the line-of-sight velocity we find that the orbit of Pyxis is rather eccentric with its apocenter at more than 100 kpc and its pericenter at about 30 kpc. The dynamics excludes an association with the ATLAS stream, the Magellanic clouds, and all satellites of the Milky Way at least down to the mass of Leo II. However, the properties of Pyxis, like metallicity and age, point to an origin from a dwarf of at least the mass of Leo II. We therefore propose that Pyxis originated from an unknown relatively massive dwarf galaxy, which is likely today fully disrupted. Assuming that Pyxis is bound to the Milky Way we derive a 68% lower limit on the mass of the Milky Way of 9.5 × 1011 M⊙.


2020 ◽  
Vol 641 ◽  
pp. A134
Author(s):  
Thomas Schmidt ◽  
Maria-Rosa L. Cioni ◽  
Florian Niederhofer ◽  
Kenji Bekki ◽  
Cameron P. M. Bell ◽  
...  

Context. The Magellanic Clouds are a nearby pair of interacting dwarf galaxies and satellites of the Milky Way. Studying their kinematic properties is essential to understanding their origin and dynamical evolution. They have prominent tidal features and the kinematics of these features can give hints about the formation of tidal dwarfs, galaxy merging and the stripping of gas. In addition they are an example of dwarf galaxies that are in the process of merging with a massive galaxy. Aims. The goal of this study is to investigate the kinematics of the Magellanic Bridge, a tidal feature connecting the Magellanic Clouds, using stellar proper motions to understand their most recent interaction. Methods. We calculated proper motions based on multi-epoch Ks-band aperture photometry, which were obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA), spanning a time of 1−3 yr, and we compared them with Gaia Data Release 2 (DR2) proper motions. We tested two methods for removing Milky Way foreground stars using Gaia DR2 parallaxes in combination with VISTA photometry or using distances based on Bayesian inference. Results. We obtained proper motions for a total of 576 411 unique sources over an area of 23 deg2 covering the Magellanic Bridge including mainly Milky Way foreground stars, background galaxies, and a small population of possible Magellanic Bridge stars (< 15 000), which mostly consist of giant stars with 11.0 <  Ks <  19.5 mag. The first proper motion measurement of the Magellanic Bridge centre is 1.80 ± 0.25 mas yr−1 in right ascension and −0.72 ± 0.13 mas yr−1 in declination. The proper motion measurements of stars along the Magellanic Bridge from the VISTA survey of the Magellanic Cloud system (VMC) and Gaia DR2 data confirm a flow motion from the Small to the Large Magellanic Cloud. This flow can now be measured all across the entire length of the Magellanic Bridge. Conclusions. Our measurements indicate that the Magellanic Bridge is stretching. By converting the proper motions to tangential velocities, we obtain ∼110 km s−1 in the plane of the sky. Therefore it would take a star roughly 177 Myr to cross the Magellanic Bridge.


Author(s):  
Tian Qiu ◽  
Wenting Wang ◽  
Masahiro Takada ◽  
Naoki Yasuda ◽  
Željko Ivezić ◽  
...  

Abstract We present proper motion measurements for more than 0.55 million main-sequence stars, by comparing astrometric positions of matched stars between the multi-band imaging datasets from the Hyper Suprime-Cam (HSC) Survey and the SDSS Stripe 82. In doing this we use 3 million galaxies to recalibrate the astrometry and set up a common reference frame between the two catalogues. The exquisite depth and the nearly 12 years of time baseline between HSC and SDSS enable high-precision measurements of statistical proper motions for stars down to i ≃ 24. A validation of our method is demonstrated by the agreement with the Gaia proper motions, to the precision better than 0.1 mas yr−1. To retain the precision, we make a correction of the subtle effects due to the differential chromatic refraction in the SDSS images based on the comparison with the Gaia proper motions against colour of stars, which is validated using the SDSS spectroscopic quasars. Combining with the photometric distance estimates for individual stars based on the precise HSC photometry, we show a significant detection of the net proper motions for stars in each bin of distance out to 100 kpc. The two-component tangential velocities after subtracting the apparent motions due to our own motion display rich phase-space structures including a clear signature of the Sagittarius stream in the halo region of distance range [10,35] kpc. We also measure the tangential velocity dispersion in the distance range 5–20 kpc and find that the data are consistent with a constant isotropic dispersion of 80 ± 10 km/s. More distant stars appear to have random motions with respect to the Galactic centre on average.


2021 ◽  
Vol 923 (1) ◽  
pp. 42
Author(s):  
Marcel S. Pawlowski ◽  
Sangmo Tony Sohn

Abstract Half of the satellite galaxies of Andromeda form a narrow plane termed the Great Plane of Andromeda (GPoA), and their line-of-sight velocities display a correlation reminiscent of a rotating structure. Recently reported first proper-motion measurements for the on-plane satellites NGC 147 and NGC 185 indicate that they indeed co-orbit along the GPoA. This provides a novel opportunity to compare the M31 satellite system to ΛCDM expectations. We perform the first detailed comparison of the orbital alignment of two satellite galaxies beyond the Milky Way with several hydrodynamical and dark-matter-only cosmological simulations (Illustris TNG50, TNG100, ELVIS, and PhatELVIS) in the context of the Planes of Satellite Galaxies Problem. In line with previous works, we find that the spatial flattening and line-of-sight velocity correlation are already in substantial tension with ΛCDM, with none of the simulated analogs simultaneously reproducing both parameters. Almost none (3%–4%) of the simulated systems contain two satellites with orbital poles as well aligned with their satellite plane as indicated by the most likely proper motions of NGC 147 and NGC 185. However, within current measurement uncertainties, it is common (≈70%) that the two best-aligned satellites of simulated systems are consistent with the orbital alignment. Yet, the chance that any two simulated on-plane satellites have as well-aligned orbital poles as observed is low (≈4%). We conclude that confirmation of the tight orbital alignment for these two objects via improved measurements, or the discovery of similar alignments for additional GPoA members, holds the potential to further raise the tension with ΛCDM expectations.


2019 ◽  
Vol 14 (S351) ◽  
pp. 412-415
Author(s):  
Paolo Bianchini

Abstracthe study of the kinematics of globular clusters (GCs) offers the possibility of unveiling their long term evolution and uncovering their yet unknown formation mechanism. Gaia DR2 has strongly revitalized this field and enabled the exploration of the 6D phase-space properties of Milky Way GCs, thanks to precision astrometry. However, to fully leverage on the power of precision astrometry, a thorough investigations of the data is required. In this contribution, we show that the study of the mean radial proper motion profiles of GCs offers an ideal benchmark to assess the presence of systematics in crowded fields. Our work demonstrates that systematics in Gaia DR2 for the closest 14 GCs are below the random measurement errors, reaching a precision of ∼0.015 mas yr−1 for mean proper motion measurements. Finally, through the analysis of the tangential component of proper motions, we report the detection of internal rotation in a sample of ∼50 GCs, and outline the implications of the presence of angular momentum for the formation mechanism of proto-GC. This result gives the first taste of the unparalleled power of Gaia DR2 for GCs science, in preparation for the subsequent data releases.


2020 ◽  
Vol 493 (4) ◽  
pp. 5825-5837 ◽  
Author(s):  
Alexandres Lazar ◽  
James S Bullock

ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$ and the circular velocity is $V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturally cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $10\rm { per\, cent}$ while SIDM are accurate to $15\rm { per\, cent}$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 &lt; rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models.


1995 ◽  
Vol 166 ◽  
pp. 45-48 ◽  
Author(s):  
A.R. Klemola ◽  
R.B. Hanson ◽  
B.F. Jones

The Lick Northern Proper Motion (NPM) Program will provide absolute proper motions (referred to faint galaxies), equatorial coordinates, and two-color photographic photometry for some 300,000 stars with 8 < B < 18 covering the 70% of the sky north of declination −23°. Part 1 of the NPM program (NPM1), recently completed, covers the 72% of the northern sky (899 of 1,246 fields) outside the Milky Way. Two catalogs result from NPM1: The NPM1 Catalog (Klemola et al. 1993a, Hanson 1993a) contains 149,000 stars. The NPM1 Reference Galaxy List (Klemola et al. 1993b, Hanson 1993b) contains 50,000 faint galaxies. Klemola et al. (1987, 1994, 1995) describe the NPM program. Hanson et al. (1994) describe the NPM1 Catalogs.


Sign in / Sign up

Export Citation Format

Share Document