scholarly journals Organic matter in the Solar System: From colors to spectral bands

2008 ◽  
Vol 4 (S251) ◽  
pp. 285-292 ◽  
Author(s):  
Dale P. Cruikshank

AbstractThe reflected spectral energy distribution of low-albedo, red-colored, airless bodies in the outer Solar System (planetary satellites, Centaur objects, Kuiper Belt objects, bare comet nuclei) can be modeled with spectral models that incorporate the optical properties of refractory complex organic materials synthesized in the laboratory and called tholins. These materials are strongly colored and impart their color properties to the models. The colors of the bodies cannot be matched with plausible minerals, ices, or metals. Iapetus, a satellite of Saturn, is one such red-colored body that is well matched with tholin-rich models. Detection of aromatic and aliphatic hydrocarbons on Iapetus by the Cassini spacecraft, and the presence of these hydrocarbons in the tholins, is taken as evidence for the widespread presence of solid organic complexes aromatic and aliphatic units on many bodies in the outer Solar System. These organic complexes may be compositionally similar to the insoluble organic matter in some classes of the carbonaceous meteorites, and thus may ultimately derive from the organic matter in the interstellar medium.

1994 ◽  
Vol 160 ◽  
pp. 31-44
Author(s):  
Jane Luu

The existence of a belt of comets in the outer solar system (the “Kuiper belt”) has been postulated for a variety of reasons, including the need for a source for the short-period comets. The existence of the belt seems supported by the discoveries of the trans-Neptunian objects 1992 QB1, 1993 FW, 1993 RO, 1993 RP, 1993 SB, and 1993 SC. If these objects are members of the Kuiper belt, crude lower limits on the belt population can be established from the discoveries. The Kuiper belt comets are likely to be primordial remnants of the disk from which the solar system accreted. According to the current theories of cometary nucleus evolution, these objects are expected to possess mantles (“irradiation mantles”) which are different from mantles of comets which have been heated to the point of sublimation (“rubble mantles”). Kuiper belt comets on their way to short-period comet orbits may exist among the Centaur objects.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 421-425
Author(s):  
Athena Coustenis

AbstractWe look at the icy moons in our outer solar system in which we find organics and the possibility for habitabile conditions therein.


2019 ◽  
Vol 622 ◽  
pp. A103 ◽  
Author(s):  
M. Boquien ◽  
D. Burgarella ◽  
Y. Roehlly ◽  
V. Buat ◽  
L. Ciesla ◽  
...  

Context. Measuring how the physical properties of galaxies change across cosmic times is essential to understand galaxy formation and evolution. With the advent of numerous ground-based and space-borne instruments launched over the past few decades we now have exquisite multi-wavelength observations of galaxies from the far-ultraviolet (FUV) to the radio domain. To tap into this mine of data and obtain new insight into the formation and evolution of galaxies, it is essential that we are able to extract information from their spectral energy distribution (SED). Aims. We present a completely new implementation of Code Investigating GALaxy Emission (CIGALE). Written in python, its main aims are to easily and efficiently model the FUV to radio spectrum of galaxies and estimate their physical properties such as star formation rate, attenuation, dust luminosity, stellar mass, and many other physical quantities. Methods. To compute the spectral models, CIGALE builds composite stellar populations from simple stellar populations combined with highly flexible star formation histories, calculates the emission from gas ionised by massive stars, and attenuates both the stars and the ionised gas with a highly flexible attenuation curve. Based on an energy balance principle, the absorbed energy is then re-emitted by the dust in the mid- and far-infrared domains while thermal and non-thermal components are also included, extending the spectrum far into the radio range. A large grid of models is then fitted to the data and the physical properties are estimated through the analysis of the likelihood distribution. Results. CIGALE is a versatile and easy-to-use tool that makes full use of the architecture of multi-core computers, building grids of millions of models and analysing samples of thousands of galaxies, both at high speed. Beyond fitting the SEDs of galaxies and parameter estimations, it can also be used as a model-generation tool or serve as a library to build new applications.


2021 ◽  
Author(s):  
Laura Buchanan ◽  
Megan Schwamb ◽  
Wesley Fraser ◽  
Michele Bannister ◽  
Michaël Marsset ◽  
...  

<p>Within the outer Solar System exists the Kuiper belt. This Kuiper belt is made up of many icy planetesimals, the remaining relics of planet-forming bodies that failed to evolve into a planet beyond Neptune. The smaller members of the Kuiper belt (with <em>r</em> mag > 22) generally show linear and featureless spectra. Additionally, due to the dimness of these objects observing their spectra can be particularly difficult. Therefore, broadband photometry is often used to characterise their surfaces. The broadband photometry can be used as a proxy for composition, as it provides enough information to characterise the optical and near-infrared spectral slopes ofthese Kuiper Belt Object (KBO) surfaces.</p> <p>The Colours of the Outer Solar System Origins Survey (Col-OSSOS, Schwamb et al., 2019) took near-simultaneous <em>g-</em>, <em>r-</em> and <em>J-band</em> broadband photometry of a sample of KBOs with unprecedented precision using the Gemini North telescope. As with previous colour surveys (e.g. Tegler et al., 2016), they showed abimodal colour distribution in optical / near-infrared colours for the dynamically ‘hot’ population. We split this colour distribution into the ‘neutral’ coloured population with <em>(</em><em>g−r</em><em>)</em> < 0.75 and the ‘red’ coloured populationwith <em>(</em><em>g−r</em><em>)</em> ≥ 0.75.</p> <p>The preciseness of the colour measurements of Col-OSSOS has allowed the identification of several KBOs with outlying surface colours. These objects separated out from the rest of the neutral cloud in <em>(</em><em>g−r</em><em>)</em> versus <em>(r−J</em><em>)</em> colours, with <em>(</em><em>g−r</em><em>)</em> colour near solar colour. Using the Gemini North telescope in Hawaii we have taken extra photometry in the <em>i</em><em>−</em> and <em>z−</em><em>bands</em> for three of these objects (2013 JE64, 2013 JR65 and 2014 UL225). These additional filter observations will allow us to identify any possible broadband absorption features on these object’s surfaces that may have caused their outlying surface colours. Asteroid interloper 2004 EW95 (Seccull et al., 2018), along with some Jupiter Trojans and C-type asteroids (Bus & Binzel, 2002; DeMeo & Carry,2013) have been shown to have similar near solar neutral surfaces. In this presentation we will report resultsof the <em>griz</em> photometry of 2013 JE64, 2013 JR65 and 2014 UL225. We will make comparisons between these results and the photometry of previously identified outlying KBOs and comment on any possible similarities.</p> <p><strong>References</strong></p> <p>Bus, S. J., & Binzel, R. P. 2002, Icarus, 158, 146<br />DeMeo, F. E., & Carry, B. 2013, Icarus, 226, 723<br />Schwamb, M. E., Bannister, M. T., Marsset, M., et al. 2019, ApJS, 243, 12<br />Seccull, T., Fraser, W. C., Puzia, T. H., Brown, M. E., & Schönebeck, F. 2018, ApJ, Letters, 855, L26<br />Tegler, S. C., Romanishin, W., Consolmagno, G. J., & J., S. 2016, AJ, 152, 210</p>


2002 ◽  
Vol 12 ◽  
pp. 243-244
Author(s):  
Ştefan Berinde

Nowadays many attempts are made to establish a qualitative and a quantitative connection between Kuiper Belt Population and Jupiter Family Comets. Basically, this can be thought as a diffusion process throughout the outer Solar System due to multiple close encounters with the giant planets. But, following the path of a body in such a process is not an easy task to be approached analytically nor numerically, because the motion is very chaotic and spread over a long time. A statistical approach seems to be a reasonable way and is the purpose of this paper.


2017 ◽  
Vol 606 ◽  
pp. A59 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.


2013 ◽  
Vol 8 (S299) ◽  
pp. 318-321
Author(s):  
Kate Y. L. Su ◽  
G. H. Rieke

AbstractWe review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.


Sign in / Sign up

Export Citation Format

Share Document