scholarly journals CIGALE: a python Code Investigating GALaxy Emission

2019 ◽  
Vol 622 ◽  
pp. A103 ◽  
Author(s):  
M. Boquien ◽  
D. Burgarella ◽  
Y. Roehlly ◽  
V. Buat ◽  
L. Ciesla ◽  
...  

Context. Measuring how the physical properties of galaxies change across cosmic times is essential to understand galaxy formation and evolution. With the advent of numerous ground-based and space-borne instruments launched over the past few decades we now have exquisite multi-wavelength observations of galaxies from the far-ultraviolet (FUV) to the radio domain. To tap into this mine of data and obtain new insight into the formation and evolution of galaxies, it is essential that we are able to extract information from their spectral energy distribution (SED). Aims. We present a completely new implementation of Code Investigating GALaxy Emission (CIGALE). Written in python, its main aims are to easily and efficiently model the FUV to radio spectrum of galaxies and estimate their physical properties such as star formation rate, attenuation, dust luminosity, stellar mass, and many other physical quantities. Methods. To compute the spectral models, CIGALE builds composite stellar populations from simple stellar populations combined with highly flexible star formation histories, calculates the emission from gas ionised by massive stars, and attenuates both the stars and the ionised gas with a highly flexible attenuation curve. Based on an energy balance principle, the absorbed energy is then re-emitted by the dust in the mid- and far-infrared domains while thermal and non-thermal components are also included, extending the spectrum far into the radio range. A large grid of models is then fitted to the data and the physical properties are estimated through the analysis of the likelihood distribution. Results. CIGALE is a versatile and easy-to-use tool that makes full use of the architecture of multi-core computers, building grids of millions of models and analysing samples of thousands of galaxies, both at high speed. Beyond fitting the SEDs of galaxies and parameter estimations, it can also be used as a model-generation tool or serve as a library to build new applications.

2020 ◽  
Vol 500 (2) ◽  
pp. 1870-1883
Author(s):  
M L L Dantas ◽  
P R T Coelho ◽  
P Sánchez-Blázquez

ABSTRACT The ultraviolet (UV) upturn is characterized by an unexpected up-rise of the UV flux in quiescent galaxies between the Lyman limit and 2500 Å. By making use of colour–colour diagrams, one can subdivide UV bright red-sequence galaxies in two groups: UV weak and upturn. With these two groups, we propose a comparison between their stellar population properties with the goal of establishing differences and similarities between them. We make use of propensity score matching to mitigate potential biases between the two samples, by selecting similar objects in terms of redshift and stellar mass. Also, we take advantage of spectral energy distribution (SED) fitting results from magphys made available by the GAMA collaboration. The analyses are made by comparing the distributions from the SED fitting directly, as well as investigating the differences in correlations between their parameters, and finally by using principal component analysis. We explore important differences and similarities between UV weak and upturn galaxies in terms of several parameters, such as: metallicity, age, specific star formation rate, time of last burst of star-formation, to mention a few. Notable differences are those concerning (g − r) colour, metallicity, and time since last burst of star-formation: UV upturn are redder in the optical, more metallic, and their last burst of star-formation happened earlier in time. These differences suggest that UV upturn systems have shorter star-formation histories (i.e. have been evolving more passively) when compared to UV weak galaxies. Consequently, these last seem to have a higher diversity of stellar populations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
L. M. Buson ◽  
D. Bettoni ◽  
P. Mazzei ◽  
G. Galletta

We want to get insight into the formation mechanism and the evolution of UGC 7639, a dwarf galaxy in the Canes Venatici I Cloud (CVnIC). We used archival multiwavelength data to constrain its global properties. Ultraviolet images show that UGC 7639 inner regions are composed mostly by young stellar populations. In addition, we used smoothed particle hydrodynamics simulations with chemophotometric implementation to account for its formation and evolution. UGC 7639 is an example of blue dwarf galaxy whose global properties are well matched by our multiwavelength approach, that is, a suitable approach to highlight the evolution also of these galaxies as a class. We found that the global properties of UGC 7639, namely, its total absolute B-band magnitude, its whole spectral energy distribution, and morphology, are well matched by an encounter with a system four times more massive than our target. Moreover, the current star formation rate of the simulated dwarf, ≈0.03 M⊙ yr−1, is in good agreement with our UV-based estimate. We derived a galaxy age of 8.6 Gyr. Following our simulation, the ongoing star formation will extinguish within 1.6 Gyr, thus leaving a red dwarf galaxy.


2020 ◽  
Vol 500 (3) ◽  
pp. 3240-3253
Author(s):  
Amanda R Lopes ◽  
Eduardo Telles ◽  
Jorge Melnick

ABSTRACT We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of H ii galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z < 0.4, cross-matched with photometric catalogues from GALEX, SDSS, UKIDSS, and WISE. We modelled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies, we find that H ii galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100−1000 Myr) and a recent population with ages < 10 Myr. H ii galaxies agree with the SFR−M* relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR−M* demonstrated not to be a good tool to provide additional information about the SFH of H ii galaxies, as different SFH present a similar behaviour with a spread of <0.1 dex.


2020 ◽  
Vol 498 (2) ◽  
pp. 2323-2338
Author(s):  
Thomas M Jackson ◽  
D J Rosario ◽  
D M Alexander ◽  
J Scholtz ◽  
Stuart McAlpine ◽  
...  

ABSTRACT In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift–BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2–0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (∼0.4–0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by ∼0.3–0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z ∼ 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (∼0.2 dex in stellar masses and ∼0.4 dex in sSFRs).


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


1996 ◽  
Vol 175 ◽  
pp. 588-590
Author(s):  
D. Villani ◽  
S. Di Serego Alighieri

Stellar populations of high redshift radio galaxies (HzRG) (z up to 4.2) are the oldest stellar systems known, that is the ones formed at the earliest cosmological epochs. Therefore they are the best objects for providing us with information about the epoch of galaxy formation. The information on the stellar populations in HzRG are obtained from the study of their Integrated Spectral Energy Distribution (ISED) which are gathered both from spectra and integrated magnitudes. The most common approach for the interpretation of colors and spectral features of the energy distribution of galaxies is the Evolutionary Population Synthesis (EPS), which has been introduced for the first time by Tinsley in 1972. EPS models have often been used in the past to interpret the ISED of HzRG (Chambers & Charlot 1990; Lilly & Longair 1984; di Serego Alighieri et al. 1994) in order to draw conclusions on the age of the stellar populations and therefore on the epoch of galaxy formation. The results are sometimes conflicting and a number of very recent EPS models have become available (Bressan et al. 1995; Bruzual & Charlot 1993; Buzzoni 1989; Guiderdoni & Rocca-Volmerange 1987): we are therefore analysing the differences between the various EPS models with the aim of assessing their suitability to study the stellar population at early epochs. The EPS models assume for stars a given Initial Mass Function(IMF) as well as a Star Formation Rate (SFR). Then one can compute the number of stars with given mass present in the galaxy as a function of time. The position of each star in the HR diagram is determined by means of the isochrones, which are calculated from stellar evolutionary models. The ISED of a galaxy is obtained from the superposition of the spectra of single stars obtained from a stellar spectral library. Thus these models describe the galaxy ISED as a function of the time, giving a complete evolutionary picture.


2019 ◽  
Vol 631 ◽  
pp. A123 ◽  
Author(s):  
Fang-Ting Yuan ◽  
Denis Burgarella ◽  
David Corre ◽  
Veronique Buat ◽  
Médéric Boquien ◽  
...  

Context. Nebular emission lines are critical to measure physical properties in the ionized gas (e.g., metallicity, the star formation rate, or dust attenuation). They also account for a significant fraction of broadband fluxes, in particular at the highest redshifts, and therefore can strongly affect the determination of other physical properties, such as the stellar mass, which are crucial in shaping our understanding of galaxy formation and evolution. Aims. We investigate a sample of 51 Lyman break galaxies at 3.0 <  zspec <  3.8 with detected [OIII] line emissions and estimated the physical properties of these galaxies to examine the impact of including nebular emission data in the Spectral energy distribution (SED) fitting. Methods. We used the Code Investigating GALaxy Emission (CIGALE) to fit the rest-frame ultraviolet-to-near-infrared SEDs of these galaxies and their emission line data simultaneously. We ran CIGALE with and without the nebular model or the emission line data, and compare the results to show the importance of including the nebular emission line data in the SED fitting. Results. We find that without the nebular model, the SED fitting overestimates the stellar mass due to the strong [OIII] lines that are redshifted to the Ks-band, which is consistent with previous results. The emission line data are necessary to constrain the nebular model in the SED fitting. We examine the Ks-band excess, which is mostly used to estimate the emissions of the [OIII]+Hβ lines when there is no spectral data, and we find that the estimation and observation are statistically consistent. However, the difference can reach up to more than 1 dex in some catastrophic cases, which shows the importance of obtaining spectroscopic measurements for these lines. We also estimate the equivalent width of the Hβ absorption and find it negligible compared to the Hβ emission. Conclusions. Line emission is important to constrain the nebular models and to obtain reliable estimates of the physical properties of galaxies. These data should be taken into account in the SED fitting.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2019 ◽  
Vol 631 ◽  
pp. A19 ◽  
Author(s):  
F. Marchi ◽  
L. Pentericci ◽  
L. Guaita ◽  
M. Talia ◽  
M. Castellano ◽  
...  

Aims. We wish to investigate the physical properties of a sample of Lyα emitting galaxies in the VANDELS survey, with particular focus on the role of kinematics and neutral hydrogen column density in the escape and spatial distribution of Lyα photons. Methods. From all the Lyα emitting galaxies in the VANDELS Data Release 2 at 3.5 ≲ z ≲ 4.5, we selected a sample of 52 galaxies that also have a precise systemic redshift determination from at least one nebular emission line (HeII or CIII]). For these galaxies, we derived different physical properties (stellar mass, age, dust extinction, and star formation rate) from spectral energy distribution (SED) fitting of the exquisite multiwavelength photometry available in the VANDELS fields, using the dedicated spectral modeling tool BEAGLE and the UV β slope from the observed photometry. We characterized the Lyα emission in terms of kinematics, equivalent width (EW), full width at half-maximum, and spatial extension and then estimated the velocity of the neutral outflowing gas. The ultra-deep VANDELS spectra (up to 80 h on-source integration) enable this for individual galaxies without the need to rely on stacks. We then investigated the correlations between the Lyα properties and the other measured properties to study how they affect the shape and intensity of Lyα emission. Results. We reproduce some of the well-known correlations between Lyα EW and stellar mass, dust extinction, and UV β slope, in the sense that the emission line appears brighter in galaxies with lower mass that are less dusty and bluer. We do not find any correlation with the SED-derived star formation rate, while we find that galaxies with brighter Lyα tend to be more compact in both UV and in Lyα. Our data reveal an interesting correlation between the Lyα velocity offset and the shift of the interstellar absorption lines with respect to the systemic redshift, observed for the first time at high redshifts: galaxies with higher interstellar medium (ISM) outflow velocities show smaller Lyα velocity shifts. We interpret this relation in the context of the shell-model scenario, where the velocity of the ISM and the HI column density contribute together in determining the Lyα kinematics. In support to our interpretation, we observe that galaxies with high HI column densities have much more extended Lyα spatial profiles; this is a sign of increased scattering. However, we do not find any evidence that the HI column density is related to any other physical properties of the galaxies, although this might be due in part to the limited range of parameters that our sample spans.


2019 ◽  
Vol 622 ◽  
pp. A56 ◽  
Author(s):  
Leandro S. M. Cardoso ◽  
Jean Michel Gomes ◽  
Polychronis Papaderos

Context. Spectral population synthesis (PS) is a fundamental tool in extragalactic research that aims to decipher the assembly history of galaxies from their spectral energy distribution (SED). Whereas this technique has led to key insights into galaxy evolution in recent decades, star formation histories (SFHs) inferred therefrom have been plagued by considerable uncertainties stemming from inherent degeneracies and the fact that until recently all PS codes were restricted to purely stellar fits, neglecting the essential contribution of nebular emission (ne). With the advent of FADO (Fitting Analysis using Differential evolution Optimisation), the now possible self-consistent modelling of stellar and ne opens new routes to the exploration of galaxy SFHs. Aims. The main goal of this study is to quantitatively explore the accuracy to which FADO can recover physical and evolutionary properties of galaxies and compare its output with that from purely stellar PS codes. Methods. FADO and STARLIGHT were applied to synthetic SEDs that track the spectral evolution of stars and gas in extinction-free mock galaxies of solar metallicity that form their stellar mass (M⋆) according to different parametric SFHs. Spectral fits were computed for two different set-ups that approximate the spectral range of SDSS and CALIFA (V500) data, using up to seven libraries of simple stellar population spectra in the 0.005–2.5 Z⊙ metallicity range. Results. Our analysis indicates that FADO can recover the key physical and evolutionary properties of galaxies, such as M⋆ and mass- and light-weighted mean age and metallicity, with an accuracy better than 0.2 dex. This is the case even in phases of strongly elevated specific star formation rate (sSFR) and thus with considerable ne contamination (EW(Hα) >  103 Å). Likewise, population vectors from FADO adequately recover the mass fraction of stars younger than 10 Myr and older than 1 Gyr (M⋆<10Myr/M⋆total and M⋆>1Gyr/M⋆total, respectively) and reproduce with a high fidelity the observed Hα luminosity. As for STARLIGHT, our analysis documents a moderately good agreement with theoretical values only for evolutionary phases for which ne drops to low levels (EW(Hα) ≤ 60 Å) which, depending on the assumed SFH, correspond to an age between ∼0.1 Gyr and 2–4 Gyr. However, fits with STARLIGHT during phases of high sSFR severely overestimate both M⋆ and the mass-weighted stellar age, whereas strongly underestimate the light-weighted age and metallicity. Furthermore, our analysis suggests a subtle tendency of STARLIGHT to favour a bi-modal SFH, as well a slightly overestimated M⋆<10Myr/M⋆total, regardless of galaxy age. Whereas the amplitude of these biases can be reduced, depending on the specifics of the fitting procedure (e.g. accuracy and completeness of flagging emission lines, omission of the Balmer and Paschen jump from the fit), they persist even in the idealised case of a line-free SED comprising only stellar and nebular continuum emission. Conclusions. The insights from this study suggest that the neglect of nebular continuum emission in STARLIGHT and similar purely stellar PS codes could systematically impact M⋆ and SFH estimates for star-forming galaxies. We argue that these biases can be relevant in the study of a range of topics in extragalactic research, including the redshift-dependent slope of the star formation (SF) main sequence, the SF frosting hypothesis, and the regulatory role of supermassive black holes on the global SFH of galaxies.


Sign in / Sign up

Export Citation Format

Share Document