scholarly journals Effects of Supernova Feedback on the Formation of Galaxies

2008 ◽  
Vol 4 (S254) ◽  
pp. 369-374
Author(s):  
Cecilia Scannapieco ◽  
Patricia B. Tissera ◽  
Simon D. M. White ◽  
Volker Springel

AbstractWe study the effects of Supernova (SN) feedback on the formation of galaxies using hydrodynamical simulations in a ΛCDM cosmology. We use an extended version of the code GADGET-2 which includes chemical enrichment and energy feedback by Type II and Type Ia SN, metal-dependent cooling and a multiphase model for the gas component. We focus on the effects of SN feedback on the star formation process, galaxy morphology, evolution of the specific angular momentum and chemical properties. We find that SN feedback plays a fundamental role in galaxy evolution, producing a self-regulated cycle for star formation, preventing the early consumption of gas and allowing disks to form at late times. The SN feedback model is able to reproduce the expected dependence on virial mass, with less massive systems being more strongly affected.

2004 ◽  
Vol 217 ◽  
pp. 328-330
Author(s):  
L. Portinari ◽  
J. Sommer-Larsen ◽  
A. D. Romeo

We present fully cosmological, hydrodynamical simulations of clusters of galaxies, including star formation, supernova feedback, chemical enrichment and metal-dependent cooling. We investigate the relation between feedback, metal enrichment of the intra-cluster medium (ICM) and the distribution of baryons in the various phases (cold gas+stars and hot ICM) at varying Initial Mass Function and wind efficiency.


2019 ◽  
Vol 15 (S359) ◽  
pp. 35-36
Author(s):  
Paramita Barai

AbstractGas accretion onto central supermassive black holes of active galaxies and resulting energy feedback, is an important component of galaxy evolution, whose details are still unknown especially at early cosmic epochs. We investigate BH growth and feedback in quasar-host galaxies at z ⩾ 6 by performing cosmological hydrodynamical simulations. We simulate the 2R200 region around a 2 × 1012Mʘ halo at z = 6, inside a (500 Mpc)3 comoving volume, using the zoom-in technique. We find that BHs accrete gas at the Eddington rate over z = 9–6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 Mʘ. Star-formation is quenched over z = 8–6.


2008 ◽  
Vol 4 (S255) ◽  
pp. 152-156 ◽  
Author(s):  
Andrea Marcolini ◽  
Annibale D'Ercole

AbstractWe present three dimensional hydrodynamical simulations aimed at studying the dynamical and chemical evolution of the interstellar medium (ISM) in isolated dwarf spheroidal galaxies (dSphs). This evolution is driven by the explosion of Type II and Type Ia supernovae, whose different contribution on both the dynamics and chemical enrichment is taken into account. Radiative losses are effective in radiating away the huge amount of energy released by SNe explosions, and the dSph is able to retain most of the gas allowing a long period (≥ 2 − 3 Gyr) of star formation, as usually observed in this kind of galaxies. We are able to reproduce the stellar metallicity distribution function (MDF) as well as the peculiar chemical properties of strongly O-depleted stars observed in several dSphs. The model also naturally predicts two different stellar populations, with an anti-correlation between [Fe/H] and velocity dispersion, similarly to what observed in the Sculptor and Fornax dSphs. These results derive from the inhomogeneous pollution of the SNe Ia, a distinctive characteristic of our model. We also applied the model to the peculiar globular cluster (GC) ω Cen in the hypothesis that it is the remnant of a formerly larger stellar system, possibly a dSph.


Author(s):  
Monique C. Aller ◽  
Varsha P. Kulkarni ◽  
Donald G. York ◽  
Daniel E. Welty ◽  
Giovanni Vladilo ◽  
...  

AbstractGas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 μm silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.


2003 ◽  
Vol 212 ◽  
pp. 630-636
Author(s):  
Francesca Matteucci ◽  
Antonio Pipino

Models of supernova (SN) driven galactic winds for ellipticals are presented. We assume that ellipticals formed at high redshift and suffered an intense burst of star formation. The role of supernovae of Type II and Type Ia in the chemical enrichment and in triggering galactic winds is studied. In particular, several recipes for SN feed-back together with detailed nucleosynthesis prescriptions are considered. It is shown that SNe of Type II have a dominant role in enriching the interstellar medium of elliptical galaxies whereas Type Ia SNe dominate the enrichment and the energetics of the intracluster medium.


2020 ◽  
Vol 498 (1) ◽  
pp. 430-463 ◽  
Author(s):  
Kartheik G Iyer ◽  
Sandro Tacchella ◽  
Shy Genel ◽  
Christopher C Hayward ◽  
Lars Hernquist ◽  
...  

ABSTRACT Understanding the variability of galaxy star formation histories (SFHs) across a range of time-scales provides insight into the underlying physical processes that regulate star formation within galaxies. We compile the SFHs of galaxies at z = 0 from an extensive set of models, ranging from cosmological hydrodynamical simulations (Illustris, IllustrisTNG, Mufasa, Simba, EAGLE), zoom simulations (FIRE-2, g14, and Marvel/Justice League), semi-analytic models (Santa Cruz SAM) and empirical models (UniverseMachine), and quantify the variability of these SFHs on different time-scales using the power spectral density (PSD) formalism. We find that the PSDs are well described by broken power laws, and variability on long time-scales (≳1 Gyr) accounts for most of the power in galaxy SFHs. Most hydrodynamical models show increased variability on shorter time-scales (≲300 Myr) with decreasing stellar mass. Quenching can induce ∼0.4−1 dex of additional power on time-scales >1 Gyr. The dark matter accretion histories of galaxies have remarkably self-similar PSDs and are coherent with the in situ star formation on time-scales >3 Gyr. There is considerable diversity among the different models in their (i) power due to star formation rate variability at a given time-scale, (ii) amount of correlation with adjacent time-scales (PSD slope), (iii) evolution of median PSDs with stellar mass, and (iv) presence and locations of breaks in the PSDs. The PSD framework is a useful space to study the SFHs of galaxies since model predictions vary widely. Observational constraints in this space will help constrain the relative strengths of the physical processes responsible for this variability.


Author(s):  
Silvia Pellegrini ◽  
Andrea Negri ◽  
Luca Ciotti

AbstractEarly-type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae and the thermalization of stellar motions. High resolution 2D hydrodynamical simulations showed that ordered rotation in the stellar component results in the formation of a centrifugally supported cold equatorial disc. In a recent numerical investigation we found that subsequent generations of stars are formed in this cold disc; this process consumes most of the cold gas, leaving at the present epoch cold masses comparable to those observed. Most of the new stellar mass formed a few Gyrs ago, and resides in a disc.


2020 ◽  
Vol 633 ◽  
pp. A125 ◽  
Author(s):  
A. Ranjan ◽  
P. Noterdaeme ◽  
J.-K. Krogager ◽  
P. Petitjean ◽  
R. Srianand ◽  
...  

We present the results from VLT/X-shooter spectroscopic observations of 11 extremely strong intervening damped Lyman-α absorbers (ESDLAs) that were initially selected as high N(H I) (i.e. ≥5 × 1021 cm−2) candidates from the Sloan Digital Sky Survey (SDSS). We confirm the high H I column densities, which we measure to be in the range log N(H I) = 21.6 − 22.4. Molecular hydrogen is detected with high column densities (N(H2)≥1018 cm−2) in 5 out of 11 systems, 3 of which are reported here for the first time, and we obtain conservative upper limits on N(H2) for the remaining 6 systems. We also measure the column density of various metal species (Zn II, Fe II, Si II, Cr II, and C I), quantify the absorption-line kinematics (Δv90), and estimate the extinction of the background quasar light (AV) by dust in the absorbing gas. We compare the chemical properties of this sample of ESDLAs, supplemented with literature measurements, to that of DLAs located at the redshift of long-duration γ-ray bursts (GRB-DLAs). We confirm that the two populations are almost indistinguishable in terms of chemical enrichment and gas kinematics. In addition, we find no marked differences in the incidence of H2. All this suggests that ESDLAs and GRB-DLAs probe similar galactic environments. We search for the galaxy counterparts of ESDLAs and find associated emission lines in 3 out of 11 systems, 2 of which are reported here for the first time (at zabs = 2.304 and 2.323 towards the quasars SDSS J002503.03+114547.80 and SDSS J114347.21+142021.60, respectively). The measured separations between the quasar sightlines and the emission associated with the ESDLA galaxy (for a total of five sightlines) are all very small (ρ <  3 kpc). Because our observations are complete up to ρ ∼ 7 kpc, we argue that the emission counterparts of the remaining systems are more likely below the detection limit than outside the search area. While the small impact parameters are similar to what is observed for GRB-DLAs, the associated star formation rates are on average lower than for GRB host galaxies. This is explained by long-duration GRBs being associated with the death of massive stars and therefore pinpointing regions of active star formation in the GRB host galaxies. Our observations support the suggestion from the literature that ESDLAs could act as blind analogues of GRB-DLAs, probing neutral gas with high column density in the heart of high-redshift galaxies, without any prior on the instantaneous star formation rate.


2020 ◽  
Vol 637 ◽  
pp. A56 ◽  
Author(s):  
Justus Neumann ◽  
Francesca Fragkoudi ◽  
Isabel Pérez ◽  
Dimitri A. Gadotti ◽  
Jesús Falcón-Barroso ◽  
...  

Stellar populations in barred galaxies save an imprint of the influence of the bar on the host galaxy’s evolution. We present a detailed analysis of star formation histories (SFHs) and chemical enrichment of stellar populations in nine nearby barred galaxies from the TIMER project. We used integral field observations with the MUSE instrument to derive unprecedented spatially resolved maps of stellar ages, metallicities, [Mg/Fe] abundances, and SFHs, as well as Hα as a tracer of ongoing star formation. We find a characteristic V-shaped signature in the SFH that is perpendicular to the bar major axis, which supports the scenario where intermediate-age stars (∼2 − 6 Gyr) are trapped on more elongated orbits shaping a thinner part of the bar, while older stars (> 8 Gyr) are trapped on less elongated orbits shaping a rounder and thicker part of the bar. We compare our data to state-of-the-art cosmological magneto-hydrodynamical simulations of barred galaxies and show that such V-shaped SFHs arise naturally due to the dynamical influence of the bar on stellar populations with different ages and kinematic properties. Additionally, we find an excess of very young stars (< 2 Gyr) on the edges of the bars, predominantly on the leading side, thus confirming typical star formation patterns in bars. Furthermore, mass-weighted age and metallicity gradients are slightly shallower along the bar than in the disc, which is likely due to orbital mixing in the bar. Finally, we find that bars are mostly more metal-rich and less [Mg/Fe]-enhanced than the surrounding discs. We interpret this as a signature that the bar quenches star formation in the inner region of discs, usually referred to as star formation deserts. We discuss these results and their implications on two different scenarios of bar formation and evolution.


2019 ◽  
Vol 15 (S341) ◽  
pp. 119-123
Author(s):  
Dian Triani ◽  
Darren Croton ◽  
Manodeep Sinha

AbstractWe build a theoretical picture of how the light from galaxies evolves across cosmic time. In particular, we predict the evolution of the galaxy spectral energy distribution (SED) by carefully integrating the star formation and metal enrichment histories of semi-analytic model (SAM) galaxies and combining these with stellar population synthesis models which we call mentari. Our SAM combines prescriptions to model the interplay between gas accretion, star formation, feedback process, and chemical enrichment in galaxy evolution. From this, the SED of any simulated galaxy at any point in its history can be constructed and compared with telescope data to reverse engineer the various physical processes that may have led to a particular set of observations. The synthetic SEDs of millions of simulated galaxies from mentari can cover wavelengths from the far UV to infrared, and thus can tell a near complete story of the history of galaxy evolution.


Sign in / Sign up

Export Citation Format

Share Document