scholarly journals Tracing the cold molecular gas reservoir through dust emission in the SMC

2008 ◽  
Vol 4 (S256) ◽  
pp. 148-153
Author(s):  
Caroline Bot ◽  
Mónica Rubio ◽  
François Boulanger ◽  
Marcus Albrecht ◽  
Frank Bertoldi ◽  
...  

AbstractThe amount of molecular gas is a key for understanding the future star formation in a galaxy. However, this quantity is difficult to infer as the cold H2 is almost impossible to observe and, especially at low metallicities, CO only traces part of the clouds, keeping large envelopes of H2 hidden from observations. In this context, millimeter dust emission tracing the cold and dense regions can be used as a tracer to unveil the total molecular gas masses. I present studies of a sample of giant molecular clouds in the Small Magellanic Cloud. These clouds have been observed in the millimeter and sub-millimeter continuum of dust emission: with SIMBA/SEST at 1.2 mm and the new LABOCA bolometer on APEX at 870 μm. Combining these with radio data for each cloud, the spectral energy distribution of dust emission are obtained and gas masses are inferred. The molecular cloud masses are found to be systematically larger than the virial masses deduced from CO emission. Therefore, the molecular gas mass in the SMC has been underestimated by CO observations, even through the dynamical masses. This result confirms what was previously observed by Bot et al. (2007). We discuss possible interpretations of the mass discrepancy observed: in the giant molecular clouds of the SMC, part of cloud's support against gravity could be given by a magnetic field. Alternatively, the inclusion of surface terms in the virial theorem for turbulent clouds could reproduce the observed results and the giant molecular clouds could be transient structures.

2018 ◽  
Vol 615 ◽  
pp. A122 ◽  
Author(s):  
S. König ◽  
S. Aalto ◽  
S. Muller ◽  
J. S. Gallagher III ◽  
R. J. Beswick ◽  
...  

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound – about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales – from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1−0 with NOEMA and of CO3−2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1′′ resolution. In particular, we compare the distribution of these dense gas tracers with CO2−1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1−0, and CO3−2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the “Eye of the Medusa”, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO+ is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO3−2/2−1 brightness temperature ratio inside “the Eye” is ~2.5 – the highest ratio found so far – implying optically thin CO emission. The CO2−1/HCN 1−0 (~9.8) and CO2−1/HCO+ 1−0 (~7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO3−1/2−1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H2) > 104 cm-3). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form newstars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.


1979 ◽  
Vol 84 ◽  
pp. 277-283
Author(s):  
N. Z. Scoville ◽  
P. M. Solomon ◽  
D. B. Sanders

Observations of CO emission at ℓ=0 to 70°, |b| ≤ 1° are analyzed to give a map of the molecular cloud distribution in the galaxy as viewed from the galactic pole. From the fact that this distribution shows no obvious spiral pattern we conclude that the giant molecular clouds sampled in the CO line are situated in both arm and interarm regions and they must last more than 108 years. A similar age estimate is deduced from the large mass fraction of H2 in the interstellar medium in the interior of the galaxy. An implication of this longevity is that the great masses of these clouds may be accumulated through cloud-cloud collisions of originally smaller clouds.


2017 ◽  
Vol 607 ◽  
pp. A55 ◽  
Author(s):  
G. van der Plas ◽  
F. Ménard ◽  
H. Canovas ◽  
H. Avenhaus ◽  
S. Casassus ◽  
...  

Context. Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photoevaporation. Aims. We aim to resolve the large cavity in the disk around HD 34282, whose presence has been predicted by previous studies modeling the spectral energy distribution of the disk. Methods. Using ALMA band 7 observations we studied HD 34282 with a spatial resolution of 0.10″ × 0.17′′ at 345 GHz. Results. We resolve the disk around HD 34282 into a ring between 0.24′′ and 1.15′′ (78+7-11 and 374+33-54 au adopting a distance of 325+29-47 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46′′ and a position angle of 135° and an azimuthal FWHM of 51°. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions. Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 Mjup brown dwarf companion at a separation of ≈0.1′′.


1987 ◽  
Vol 115 ◽  
pp. 653-653
Author(s):  
D. B. Sanders

CO emission has been detected from 75 bright infrared galaxies with CZ = 2 000 – 16 000 km/s. These include the most distant and the most luminous galaxies (Arp 55, IR 1713+63) yet detected in CO. All of these galaxies are rich in molecular gas with Mtotal (H2) = 2 × 109 −6x1010 M⊙, and they have a strong far-infrared excess, with LFIR/LB = 2-40 and LFIR (40-400μ) = 1010 – 3 × 1012 L⊙. The primary luminosity source appears to be star formation in molecular clouds. A strong correlation is found between the FIR and 21-cm continuum flux, implying that the IMF is independent of the star formation rate. The ratio LFIR/M(H2) provides a measure of the current rate of star-formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. VLA maps plus a few high resolution (14″-30″) CO (1-0) and CO (2-1) maps suggest that most of the luminosity comes from core regions 1-3 kpc in size. The abnormal concentration of molecular gas in these galactic cores is presumably the result of a collision or strong interaction with a nearby companion.


2008 ◽  
Vol 4 (S256) ◽  
pp. 154-159
Author(s):  
Adam K. Leroy ◽  
Alberto D. Bolatto ◽  
Erik Rosolowsky ◽  
Snežana Stanimirović ◽  
Norikazu Mizuno ◽  
...  

AbstractWe compare the resolved properties of giant molecular clouds (GMCs) in the Small Magellanic Cloud (SMC) and other low mass galaxies to those in more massive spirals. When measured using CO line emission, differences among the various populations of GMCs are fairly small. We contrast this result with the view afforded by dust emission in the Small Magellanic Cloud. Comparing temperature-corrected dust opacity to the distribution of Hisuggests extended envelopes of CO-free H2, implying that CO traces only the highest density H2in the SMC. Including this CO-free H2, the gas depletion time, H2-to-Hiratio, and H2-to-stellar mass/light ratio in the SMC are all typical of those found in more massive irregular galaxies.


1984 ◽  
Vol 108 ◽  
pp. 399-400
Author(s):  
M. Rubio ◽  
R. Cohen ◽  
J. Montani

The dwarf Magellanic irregular galaxies apparently have a very low molecular content compared to the Milky Way. In the LMC, molecular clouds are fairly common, but the ratio of molecular to atomic gas is at least 5 times lower than in the Galaxy (Cohen et al. 1984). Elmegreen et al. (1980) searched for CO in 6 dwarf galaxies and failed to detect any emission even though their sensitivity was adequate to detect galactic giant molecular clouds placed at the distance of these galaxies. Israel (1984) observed the J=2→1 transition of CO at 15 points in the Small Magellanic Cloud and detected CO emission from five of them, but at a level two to six times lower than typical galactic values.


2017 ◽  
Vol 600 ◽  
pp. A27 ◽  
Author(s):  
P. Gratier ◽  
J. Braine ◽  
K. Schuster ◽  
E. Rosolowsky ◽  
M. Boquien ◽  
...  

Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2 mass. Traditionally, this is done using CO observations and a few assumptions but the Herschel observations which cover the far-IR dust spectrum make it possible to estimate the molecular gas mass independently of CO and thus to investigate whether and how the CO traces H2. Previous attempts to derive gas masses from dust emission suffered from biases. Generally, dust surface densities, H i column densities, and CO intensities are used to derive a gas-to-dust ratio (GDR) and the local CO intensity to H2 column density ratio (XCO), sometimes allowing for an additional CO-dark gas component (Kdark). We tested earlier methods, revealing degeneracies among the parameters, and then used a sophisticated Bayesian formalism to derive the most likely values for each of the parameters mentioned above as a function of position in the nearby prototypical low metallicity (12 + log (O/H) ~ 8.4) spiral galaxy M 33. The data are from the IRAM Large Program mapping in the CO(2–1) line along with high-resolution H i and Herschel dust continuum observations. Solving for GDR, XCO, and Kdark in macropixels 500 pc in size, each containing many individual measurements of the CO, H i, and dust emission, we find that (i) allowing for CO dark gas (Kdark) significantly improves fits; (ii) Kdark decreases with galactocentric distance; (iii) GDR is slightly higher than initially expected and increases with galactocentric distance; (iv) the total amount of dark gas closely follows the radially decreasing CO emission, as might be expected if the dark gas is H2 where CO is photodissociated. The total amount of H2, including dark gas, yields an average XCO of twice the galactic value of 2 × 1020 cm-2/ K km s-1, with about 55% of this traced directly through CO. The rather constant fraction of dark gas suggests that there is no large population of diffuse H2 clouds (unrelated to GMCs) without CO emission. Unlike in large spirals, we detect no systematic radial trend in XCO, possibly linked to the absence of a radial decrease in CO line ratios.


2001 ◽  
Vol 204 ◽  
pp. 47-55
Author(s):  
François Boulanger ◽  
Jean-Philippe Bernard ◽  
Guilaine Lagache ◽  
Bertrand Stepnik

We review the present understanding of the interstellar dust contribution to the far-IR (λ > 100 μm) sky emission. We show how the contribution from the distinct ISM components (HI, H2, HII gas) are identified and characterized through spatial correlation with gas emission lines. We discuss the spectral energy distribution of the emission from cirrus dust associated with diffuse HI gas and from colder dust associated with molecular gas. We relate the drop in dust emission temperature from the diffuse interstellar medium to molecular gas to an evolution of dust affecting both the abundance of small dust grains and the far-IR emissivity of large grains.


2020 ◽  
Vol 493 (3) ◽  
pp. 3744-3756 ◽  
Author(s):  
Judit Fogasy ◽  
K K Knudsen ◽  
G Drouart ◽  
C D P Lagos ◽  
L Fan

ABSTRACT The gas content of galaxies is a key factor for their growth, starting from star formation and black hole accretion to galaxy mergers. Thus, characterizing its properties through observations of tracers like the CO emission line is of big importance in order to understand the bigger picture of galaxy evolution. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of dust continuum, CO(5–4) and CO(8–7) line emission in the quasar–star-forming companion system SMM J04135+10277 (z = 2.84). Earlier low-J CO studies of this system found a huge molecular gas reservoir associated with the companion galaxy, while the quasar appeared gas-poor. Our CO observations revealed that the host galaxy of the quasar is also gas-rich, with an estimated molecular gas mass of $\sim (0.7{\!-\!}2.3)\times 10^{10}\, \rm M_{\odot}$. The CO line profiles of the companion galaxy are very broad ($\sim 1000\, \rm km\, s^{-1}$), and show signs of rotation of a compact, massive system. In contrast to previous far-infrared observations, we resolve the continuum emission and detect both sources, with the companion galaxy dominating the dust continuum and the quasar having a $\sim 25{{\ \rm per\ cent}}$ contribution to the total dust emission. By fitting the infrared spectral energy distribution of the sources with mr-moose and empirical templates, the infrared luminosities of the quasar and the companion are in the range of $L_{\rm IR, QSO}\sim (2.1{\!-\!}9.6)\times 10^{12}\, \rm L_{\odot}$ and $L_{\rm IR, Comp.}\sim (2.4{\!-\!}24)\times 10^{12}\, \rm L_{\odot}$, while the estimated star formation rates are $\sim 210{\!-\!}960$ and $\sim 240{\!-\!}2400\, \rm M_{\odot }\, yr^{-1}$, respectively. Our results demonstrate that non-detection of low-J CO transition lines in similar sources does not necessarily imply the absence of massive molecular gas reservoir but that the excitation conditions favour the excitation of high-J transitions.


2006 ◽  
Vol 2 (S237) ◽  
pp. 331-335
Author(s):  
Yu Gao

AbstractActive star formation (SF) is tightly related to the dense molecular gas in the giant molecular clouds' dense cores. Our HCN (measure of the dense molecular gas) survey in 65 galaxies (including 10 ultraluminous galaxies) reveals a tight linear correlation between HCN and IR (SF rate) luminosities, whereas the correlation between IR and CO (measure of the total molecular gas) luminosities is nonlinear. This suggests that the global SF rate depends more intimately upon the amount of dense molecular gas than the total molecular gas content. This linear relationship extends to both the dense cores in the Galaxy and the hyperluminous extreme starbursts at high-redshift. Therefore, the global SF law in dense gas appears to be linear all the way from dense cores to extreme starbursts, spanning over nine orders of magnitude in IR luminosity.


Sign in / Sign up

Export Citation Format

Share Document