scholarly journals The molecular gas mass of M 33

2017 ◽  
Vol 600 ◽  
pp. A27 ◽  
Author(s):  
P. Gratier ◽  
J. Braine ◽  
K. Schuster ◽  
E. Rosolowsky ◽  
M. Boquien ◽  
...  

Do some environments favor efficient conversion of molecular gas into stars? To answer this, we need to be able to estimate the H2 mass. Traditionally, this is done using CO observations and a few assumptions but the Herschel observations which cover the far-IR dust spectrum make it possible to estimate the molecular gas mass independently of CO and thus to investigate whether and how the CO traces H2. Previous attempts to derive gas masses from dust emission suffered from biases. Generally, dust surface densities, H i column densities, and CO intensities are used to derive a gas-to-dust ratio (GDR) and the local CO intensity to H2 column density ratio (XCO), sometimes allowing for an additional CO-dark gas component (Kdark). We tested earlier methods, revealing degeneracies among the parameters, and then used a sophisticated Bayesian formalism to derive the most likely values for each of the parameters mentioned above as a function of position in the nearby prototypical low metallicity (12 + log (O/H) ~ 8.4) spiral galaxy M 33. The data are from the IRAM Large Program mapping in the CO(2–1) line along with high-resolution H i and Herschel dust continuum observations. Solving for GDR, XCO, and Kdark in macropixels 500 pc in size, each containing many individual measurements of the CO, H i, and dust emission, we find that (i) allowing for CO dark gas (Kdark) significantly improves fits; (ii) Kdark decreases with galactocentric distance; (iii) GDR is slightly higher than initially expected and increases with galactocentric distance; (iv) the total amount of dark gas closely follows the radially decreasing CO emission, as might be expected if the dark gas is H2 where CO is photodissociated. The total amount of H2, including dark gas, yields an average XCO of twice the galactic value of 2 × 1020 cm-2/ K km s-1, with about 55% of this traced directly through CO. The rather constant fraction of dark gas suggests that there is no large population of diffuse H2 clouds (unrelated to GMCs) without CO emission. Unlike in large spirals, we detect no systematic radial trend in XCO, possibly linked to the absence of a radial decrease in CO line ratios.

2008 ◽  
Vol 4 (S256) ◽  
pp. 148-153
Author(s):  
Caroline Bot ◽  
Mónica Rubio ◽  
François Boulanger ◽  
Marcus Albrecht ◽  
Frank Bertoldi ◽  
...  

AbstractThe amount of molecular gas is a key for understanding the future star formation in a galaxy. However, this quantity is difficult to infer as the cold H2 is almost impossible to observe and, especially at low metallicities, CO only traces part of the clouds, keeping large envelopes of H2 hidden from observations. In this context, millimeter dust emission tracing the cold and dense regions can be used as a tracer to unveil the total molecular gas masses. I present studies of a sample of giant molecular clouds in the Small Magellanic Cloud. These clouds have been observed in the millimeter and sub-millimeter continuum of dust emission: with SIMBA/SEST at 1.2 mm and the new LABOCA bolometer on APEX at 870 μm. Combining these with radio data for each cloud, the spectral energy distribution of dust emission are obtained and gas masses are inferred. The molecular cloud masses are found to be systematically larger than the virial masses deduced from CO emission. Therefore, the molecular gas mass in the SMC has been underestimated by CO observations, even through the dynamical masses. This result confirms what was previously observed by Bot et al. (2007). We discuss possible interpretations of the mass discrepancy observed: in the giant molecular clouds of the SMC, part of cloud's support against gravity could be given by a magnetic field. Alternatively, the inclusion of surface terms in the virial theorem for turbulent clouds could reproduce the observed results and the giant molecular clouds could be transient structures.


2012 ◽  
Vol 10 (H16) ◽  
pp. 617-617
Author(s):  
Jonathan Braine ◽  
Fatemeh Tabatabaei ◽  
Manolis Xilouris

AbstractWe use the very recently completed high-resolution IRAM CO survey of M33 with the high-resolution HI observations (published by Gratier et al. 2010, A&A, 522, 3) and Herschel Far-IR and submillimeter mapping observations to study how the dust behaves in the molecular and atomic gas phases of the interstellar medium (ISM). M33 is a “young" object in that it is gas-rich with a young stellar population and low metallicity as compared to large spirals like the Milky Way or Andromeda. Nonetheless, it is very clearly a spiral galaxy with a thin and reasonably axisymmetric disk. As such, it can be viewed as a stepping stone towards less evolved objects like magellanic irregulars (including the LMC and SMC) and perhaps distant objects in the early universe. More specifically, we look for radial variations in the dust emission spectrum (β parameter) as well as comparing regions dominated by either H2 or HI. The grey-body emission spectrum flattens (lower β) with galactocentric distance and generally is flatter in the atomic medium as compared to the molecular gas.


1987 ◽  
Vol 115 ◽  
pp. 145-146
Author(s):  
T. L. Wilson ◽  
E. Serabyn ◽  
C. Henkel ◽  
C. M. Walmsley

A fully sampled map of size ∼1′×3′ (R.A. Dec), centered on BN-KL has been made in the J = 1-0 line of 12C18O with 21″ angular resolution. The 12C18O emission is concentrated in a ← 40″ wide continuous strip running S to NE. Several maxima are superposed on the ridge, but none exceeds the average emission level by more than 40%. There is no intense peak of 12C18O J = 1-0 line emission centered on BN-KL, in contrast to maps of the dust emission. The dust and 12C18O results can be reconciled with a constant (CO/H2) ratio if there are variations in the kinetic temperature and column density of ∼50%. Peaks in both temperature and column density are then located near BN-KL, and 90″ to the south. From the estimated CO column density, about 10% of the carbon is in the form of CO. Near the BN-KL region, the 12C18O line profiles tend to become wider. These wider lines appear to be superposed on a weak, 18 km s−1 (FWHP) wide pedestal. In regions 40″ NE and 30″ S of BN-KL, the 12C18O lines have widths of less than 2 km s−1. Presumably, these are the locations of high density, quiescent molecular gas. The radial velocity of the CO emission increases from 6.5 km s−1 (at 90″ S) to 10.5 km s−1 (at 60″ NE) of BN-KL. Close to BN-KL, however, there is evidence that this trend is reversed.


Author(s):  
S Carniani ◽  
S Gallerani ◽  
L Vallini ◽  
A Pallottini ◽  
M Tazzari ◽  
...  

Abstract We present Atacama Large Millimiter/submillimiter Array (ALMA) observations of eight highly excited CO (${\rm J_{\rm up}}$ >8) lines and continuum emission in two z ∼ 6 quasars: SDSS J231038.88+185519.7 (hereafter J2310), for which CO(8-7), CO(9-8), and CO(17-16) lines have been observed, and ULAS J131911.29+095951.4 (J1319), observed in the CO(14-13), CO(17-16) and CO(19-18) lines. The continuum emission of both quasars arises from a compact region (<0.9 kpc). By assuming a modified black-body law, we estimate dust masses of Log(Mdust/M⊙) = 8.75 ± 0.07 and Log(Mdust/M⊙) = 8.8 ± 0.2 and dust temperatures of Tdust = 76 ± 3 K and $T_{\rm dust}=66^{+15}_{-10}~{\rm K}$, respectively for J2310 and J1319. Only CO(8-7) and CO(9-8) in J2310 are detected, while 3σ upper limits on luminosities are reported for the other lines of both quasars. The CO line luminosities and upper limits measured in J2310 and J1319 are consistent with those observed in local AGN and starburst galaxies, and other z ∼ 6 quasars, except for SDSS J1148+5251 (J1148), the only quasar at z = 6.4 with a previous CO(17-16) line detection. By computing the CO SLEDs normalised to the CO(6-5) line and FIR luminosities for J2310, J1319, and J1149, we conclude that different gas heating mechanisms (X-ray radiation and/or shocks) may explain the different CO luminosities observed in these z ∼ 6 quasar. Future ${\rm J_{\rm up}}$ >8 CO observations will be crucial to understand the processes responsible for molecular gas excitation in luminous high-z quasars.


2020 ◽  
Vol 643 ◽  
pp. A141 ◽  
Author(s):  
S. C. Madden ◽  
D. Cormier ◽  
S. Hony ◽  
V. Lebouteiller ◽  
N. Abel ◽  
...  

Context. Molecular gas is a necessary fuel for star formation. The CO (1−0) transition is often used to deduce the total molecular hydrogen but is challenging to detect in low-metallicity galaxies in spite of the star formation taking place. In contrast, the [C II]λ158 μm is relatively bright, highlighting a potentially important reservoir of H2 that is not traced by CO (1−0) but is residing in the C+-emitting regions. Aims. Here we aim to explore a method to quantify the total H2 mass (MH2) in galaxies and to decipher what parameters control the CO-dark reservoir. Methods. We present Cloudy grids of density, radiation field, and metallicity in terms of observed quantities, such as [O I], [C I], CO (1−0), [C II], LTIR, and the total MH2. We provide recipes based on these models to derive total MH2 mass estimates from observations. We apply the models to the Herschel Dwarf Galaxy Survey, extracting the total MH2 for each galaxy, and compare this to the H2 determined from the observed CO (1−0) line. This allows us to quantify the reservoir of H2 that is CO-dark and traced by the [C II]λ158 μm. Results. We demonstrate that while the H2 traced by CO (1−0) can be negligible, the [C II]λ158 μm can trace the total H2. We find 70 to 100% of the total H2 mass is not traced by CO (1−0) in the dwarf galaxies, but is well-traced by [C II]λ158 μm. The CO-dark gas mass fraction correlates with the observed L[C II]/LCO(1−0) ratio. A conversion factor for [C II]λ158 μm to total H2 and a new CO-to-total-MH2 conversion factor as a function of metallicity are presented. Conclusions. While low-metallicity galaxies may have a feeble molecular reservoir as surmised from CO observations, the presence of an important reservoir of molecular gas that is not detected by CO can exist. We suggest a general recipe to quantify the total mass of H2 in galaxies, taking into account the CO and [C II] observations. Accounting for this CO-dark H2 gas, we find that the star-forming dwarf galaxies now fall on the Schmidt–Kennicutt relation. Their star-forming efficiency is rather normal because the reservoir from which they form stars is now more massive when introducing the [C II] measures of the total H2 compared to the small amount of H2 in the CO-emitting region.


2020 ◽  
Vol 496 (1) ◽  
pp. L38-L42
Author(s):  
Kaiyi Du ◽  
Yong Shi ◽  
Zhi-Yu Zhang ◽  
Junzhi Wang ◽  
Yu Gao

ABSTRACT In most galaxies like the Milky Way, stars form in clouds of molecular gas. Unlike the CO emission that traces the bulk of molecular gas, the rotational transitions of HCN and CS molecules mainly probe the dense phase of molecular gas, which has a tight and almost linear relation with the far-infrared luminosity and star formation rate (SFR). However, it is unclear whether dense molecular gas exists at very low metallicity, and if exists, how it is related to star formation. In this work, we report ALMA observations of the CS J = 5 → 4 emission line of DDO 70, a nearby gas-rich dwarf galaxy with $\sim \!7{{\ \rm per\ cent}}$ solar metallicity. We did not detect CS emission from all regions with strong CO emission. After stacking all CS spectra from CO-bright clumps, we find no more than a marginal detection of CS J = 5 → 4 transition, at a signal-to-noise ratio of ∼3.3. This 3σ upper limit deviates from the $L^\prime _{\rm CS}$–LIR and $L^\prime _{\rm CS}$–SFR relationships found in local star-forming galaxies and dense clumps in the Milky Way, implying weaker CS emission at given infrared luminosity and SFR. We discuss the possible mechanisms that suppress CS emission at low metallicity.


2020 ◽  
Vol 493 (3) ◽  
pp. 3947-3955 ◽  
Author(s):  
L K Eppens ◽  
E M Reynoso ◽  
J Lazendic-Galloway ◽  
J A Combi ◽  
J F Albacete-Colombo

ABSTRACT We report new CO observations and a detailed molecular-line study of the mixed morphology supernova remnant G359.1−0.5, which contains six OH (1720 MHz) masers along the radio shell, indicative of shock-cloud interaction. Observations of 12CO and 13CO J:1–0 lines were performed in a ∼38 × 38 arcmin area with the on-the-fly technique using the Kit Peak 12 Meter telescope. The molecular study has revealed the existence of a few clumps with densities ∼103 cm−3 compatible in velocity and position with the OH (1720 MHz) masers. These clumps, in turn, appear to be part of a larger, elongated molecular structure ∼34 arcmin long extending between −12.48 and +1.83 km s−1, adjacent to the western edge of the radio shell. According to the densities and relative position with respect to the masers, we conclude that the CO clouds depict unshocked gas, as observed in other remnants with OH (1720 MHz) masers. In addition, we investigated the distribution of the molecular gas towards the adjacent γ-ray source HESS J1745-303 (Aharonian et al. 2006) but could not find any morphological correlation between the γ-rays and the CO emission at any velocity in this region.


1987 ◽  
Vol 115 ◽  
pp. 653-653
Author(s):  
D. B. Sanders

CO emission has been detected from 75 bright infrared galaxies with CZ = 2 000 – 16 000 km/s. These include the most distant and the most luminous galaxies (Arp 55, IR 1713+63) yet detected in CO. All of these galaxies are rich in molecular gas with Mtotal (H2) = 2 × 109 −6x1010 M⊙, and they have a strong far-infrared excess, with LFIR/LB = 2-40 and LFIR (40-400μ) = 1010 – 3 × 1012 L⊙. The primary luminosity source appears to be star formation in molecular clouds. A strong correlation is found between the FIR and 21-cm continuum flux, implying that the IMF is independent of the star formation rate. The ratio LFIR/M(H2) provides a measure of the current rate of star-formation, which is found to be a factor 3-20 larger in these galaxies than for the ensemble of molecular clouds in the Milky Way. VLA maps plus a few high resolution (14″-30″) CO (1-0) and CO (2-1) maps suggest that most of the luminosity comes from core regions 1-3 kpc in size. The abnormal concentration of molecular gas in these galactic cores is presumably the result of a collision or strong interaction with a nearby companion.


1987 ◽  
Vol 115 ◽  
pp. 628-630 ◽  
Author(s):  
T. Handa ◽  
Y. Sofue ◽  
N. Nakai ◽  
M. Fujimoto ◽  
M. Hayashi

CO observations of the nuclear region of the SABc galaxy M83 have been made with the 45-m telescope at NRO. A bar-like elongation of the CO emission along the optical bar and a velocity field which suggests noncircular motions are found. These results are consistent with predictions based on the theoretical model of barred spiral galaxies. The inflow and concentration of molecular gas in the nucleus of M83 may supply raw material which maintains a burst of star formation there.


2021 ◽  
Vol 922 (2) ◽  
pp. 171
Author(s):  
Kazuki Tokuda ◽  
Hiroshi Kondo ◽  
Takahiro Ohno ◽  
Ayu Konishi ◽  
Hidetoshi Sano ◽  
...  

Abstract We have analyzed the data from a large-scale CO survey toward the northern region of the Small Magellanic Cloud (SMC) obtained with the Atacama Compact Array (ACA) stand-alone mode of ALMA. The primary aim of this study is to comprehensively understand the behavior of CO as an H2 tracer in a low-metallicity environment (Z ∼ 0.2 Z ⊙). The total number of mosaic fields is ∼8000, which results in a field coverage of 0.26 deg2 (∼2.9 ×105 pc2), corresponding to ∼10% of the area of the galaxy. The sensitive ∼2 pc resolution observations reveal the detailed structure of the molecular clouds previously detected in the single-dish NANTEN survey. We have detected a number of compact CO clouds within lower H2 column density (∼1020 cm−2) regions whose angular scale is similar to the ACA beam size. Most of the clouds in this survey also show peak brightness temperature as low as <1 K, which for optically thick CO emission implies an emission size much smaller than the beam size, leading to beam dilution. The comparison between an available estimation of the total molecular material traced by thermal dust emission and the present CO survey demonstrates that more than ∼90% of H2 gas cannot be traced by the low-J CO emission. Our processed data cubes and 2D images are publicly available.


Sign in / Sign up

Export Citation Format

Share Document